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Abstract:  

Buruli ulcer is classified as a neglected tropical disease that has emerged in various regions, 

including developed nations such as Australia. This condition primarily manifests as a skin 

disorder affecting the arms and legs. It has been detected in several mammalian species, notably 

in possums which in turn transmit the disease to humans. To effectively reduce the incidence 

and prevent the transmission of this disease to less developed countries, comprehensive 

eradication and control initiatives are essential before it escalates into an epidemic. This study 

introduces a SIR-type epidemic model specifically for humans. A detailed analysis of the 

model's properties has been conducted, leading to the establishment of its stability results. The 

stability at fixed points has been assessed, demonstrating that the model exhibits local 

asymptotic stability. The conditions for stability in the disease-free scenario are confirmed for 

𝑅0 < 1, while the endemic situation is analyzed for 𝑅0 > 1. 

Keywords: Buruli ulcer, Mathematical Modeling, Stability analysis, Reproduction number, 

Equilibria Points. 

1. Introduction 

An infection with Mycobacterium Ulcerans (MU) is thought to be the most common disease 

in human society that causes both disability and deformity. The MU is one of several that have 

been found to have the potential to be hazardous to both humans and animals (Bonyah et al. 

2016). The pathogenic bacterium that causes Buruli Ulcers frequently causes large ulcers to 

form on the arms or legs, causing extensive destruction of soft tissue and skin. MU are the 

cause of this terrible illness. In many nations, ulcers are quickly becoming a crippling 

condition. It is named for the Buruli region of Uganda, which is close to the Nile River and 

where the first significant number of cases were documented in 1961 (Nyabadza and Bonyah 

2015).  
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The possibility of MU infection in wildlife has been the subject of numerous studies. In 

Australia, ringed-tailed opossums and an alpaca naturally infected koalas. The clinically 

identified lesions were identical to those found in humans. According to (Hayman and Hibble 

2001), a clinically detected lesion in an adult ringed tail opossum (Pseudocheirus Peregrinus) 

in east Cows in January 1998 was consistent with an infection caused by MU. Nevertheless, 

no additional research regarding the PCR or culture of this infected animal has been presented 

for diagnosis. In their study of brushtail possum MU inoculation, the authors in (Bolliger et al. 

1950) discovered that an uninoculated opossum in a different cage in the same room had 

contracted the infection. According to some recent findings, aquatic insects may be involved 

in the spread of infections among anemia populations and humans. For more information, see 

(Marsollier al. 2002). Koalas and possums, which are classified as small mammals, consume 

MU by transferring it through the environment through aerosols (Hayman and Hibble 2001). 

Individual possums may contract the disease from infected insect vectors or mosquitoes that 

feed on mammals and spread the infection. A vector may become infected if it attacks small 

infected mammals. MU is eventually released into the environment by infected mammals, who 

also increase infection. This cycle of disease transmission between vectors and mammals is 

underway, and vice versa (Khan et al. 2021). Additionally, it's necessary to Keep in mind that 

antibiotics can be used to treat Buruli ulcer. Daily administration of a combination of 

streptomycin and rifampin has the capacity to eradicate MU bacilli and encourage healing 

without recurrence for eight weeks (Nyabadza and Bonyah 2015). 

A mathematical model is an abstract representation of a phenomenon created using 

equations that produce perspectives of the general behavior of an epidemic event. It also serves 

as a means of examining the impact of determinate factors on the spread of disease. It provides 

a primitive general behavior of an epidemic as addressed by epidemic curves, enabling 

predictions regarding the duration of an epidemic, its magnitude in the population, and the 

assessment of factors that affect the dynamics of transmission and, in turn, the number of cases. 

pointing out that the models can be improved mathematically to make them more similar to 

actual data (Van et al. 2017) and (Huppert 2013). Mathematical modeling is a highly flexible 

tool in infectious disease epidemiology that enables the identification of epidemic patterns, 

extrapolations of epidemic behaviors, and the dynamic effects of interventions like treatment 

needed, vaccination, quarantine, social distance, and hygiene measures. It is also inexpensive 

and allows for the simulation of experiments that are unethical in human subjects as well as 

experiments that have low economic viability in animal models (Opatowski L et al. 2011). 

Ronald Ross, William Hamer, and others created the susceptible-infected-removed (SIR) 

model in the early 20th century. It is made up of three coupled non-linear ordinary differential 

equations without an explicit formula solution. On the other hand, we can learn a lot about the 

solutions using basic calculus tools. Along the way, we demonstrate how this straightforward 

model aids in providing a theoretical framework for public health interventions and how the 

discovery of several public health guiding principles requires the use of a model similar to this 

one. A number of strong assumptions are made in the derivation of the SIR disease transmission 

https://aujes.journals.ekb.eg/
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model. By easing some of the presumptions, the authors of hundreds of papers (and some 

books) expand this fundamental model in numerous ways. 

In this paper, we employ mathematical modeling, especially SIR, to comprehend the 

behavior and spread of Buruli Ulcer in order to find solutions and raise awareness of the 

disease. The infection can then be avoided. Public health Organizations may find our 

hypothesis useful in containing the infection and fight the disease. In section 2 we offer a 

thorough mathematical modeling formulation for the specified issue. In section 3 we will take 

sub-model and deal with it by giving a brief analysis of the equilibrium points of the model, its 

stability locally also estimating its reproductive number. In section 4 we analyze the full model 

by studying its equilibrium points at free disease and in case of endemic also we find the 

reproductive number and study the local stability of the full model. Section 5 shows the 

numerical simulation of our model and we summarize our present work in Section 6. As far as 

the authors are aware, no research has been mathematically planned to comprehend Buruli 

Ulcer's human mathematical modeling and investigate its dynamics. 

2. Mathematical Model Formulation 

Here, we give a brief explanation of the model formulation by denoting the human 

population as 𝑁ℎ(t) and further dividing it into three compartments: 𝑆ℎ(t) represents the healthy 

or susceptible individuals who may be at risk of contracting an infection, 𝐼ℎ(𝑡) represents those 

who are infectious with MU, and 𝑅ℎ(𝑡) represents those who recover after becoming infected. 

𝑁ℎ(t) = 𝑆ℎ(t)+ 𝐼ℎ(𝑡)+ 𝑅ℎ(𝑡) . 

Let 𝑁𝑝(t) be the possum population, Since  𝑆𝑝(t) is the healthy or the susceptible possums 

which are possibly to attract the infections , and 𝐼𝑝(t) is infectious with MU, which is 

determined by  

𝑁𝑝(𝑡) =  𝑆𝑝(𝑡) + 𝐼𝑝 (𝑡). 

Let 𝑁𝑣(𝑡) be the vector (mosquitoes) population at time 𝑡 which splits into two 

compartments: 𝑆𝑣(𝑡) represents the susceptible or healthy vector, and 𝐼𝑣(𝑡) is the infected 

vector 

𝑁𝑣(𝑡)  =  𝑆𝑣(𝑡) + 𝐼𝑣(𝑡) . 

The density of the MU in the environment is shown by E. 

The transformation diagram is given as following figure (1). 

https://aujes.journals.ekb.eg/
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Figure 1. Transmission diagram 

As we show in the figure (1), 𝛽ℎ is the transmission probability of contact through the 

infected possum and is given by the route 𝛽ℎ𝐼𝑣𝑆ℎ . The item 𝛼ℎ defines to be the probability 

of human getting infection due to the environment and is given by the route 𝛼ℎ𝐸𝑆ℎ.  

Including possum-related items, The infection spreads to the infected class of possums 

through the contact rate indicated by 𝛽𝑝𝐼𝑝𝑆ℎ. Additionally, The item 𝛼𝑝, which is determined 

by the route 𝛼𝑝𝐸𝑆𝑝, is defined as the transmission probability of contact through MU from 

the environment. Moreover, 𝛿𝑝 is the number of individuals who die from possum-infected 

diseases. 

Concerning vector (mosquito) object  𝛽𝑣 is defines to be The contact rate between 

suseptable vectors and environment then the transmission route given by 𝛽𝑣𝐼𝑝𝑆𝑣.  

Environment item are 𝛼𝐸 which is The rate of shedding of infected individual in environment 

and 𝜇𝐸is the decay of environmental MU , all news born are supposed to be susceptible. 

In the following table we define parameters we used in our model and its values which 

will be used lately in numerical results. 

Parameter Definition Value Refs 

∏ℎ  The birth rate of humans 100 (Jin-Qiang et al.2021) 

https://aujes.journals.ekb.eg/
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∏𝑝  The birth rate of Possums 2 (Khan et al. 2021) 

∏𝑣  The birth rate of vectors 5 (Khan et al. 2021) 

𝛽ℎ The contact rate between 𝑆ℎand 𝐼𝑝 0.025 (Khan et al. 2021) 

𝛽𝑝 The contact rate between 𝑆𝑝and 𝐼𝑣 0.2 (Khan et al. 2021) 

𝛽𝑣 The contact rate between 𝑆𝑣and E 0.09 (Khan et al. 2021) 

𝛾 Immunity warning recovery rate of infected 

humans 

0.065 (Jin-Qiang et al.2021) 

𝜇ℎ Natural death (Mortality) rate in humans 0.00004 (Jin-Qiang et al.2021) 

𝜇𝑝 Natural death(Mortality) rate in Possums 0.0000457 (Khan et al. 2021) 

𝜇𝑣 Natural death (Mortality) rate in vectors 0.0714 (Khan et al. 2021) 

𝜇𝐸 Natural death (Mortality) rate of MU in E 0.0714 (Khan et al. 2021) 

𝜂 The recovery rate of infected humans 0.05 (Khan et al. 2021) 

𝛼ℎ Probability of human getting infection due to 

E 

0.02 assumed 

𝛼𝑝 Probability of possum getting infection due to 

E 

0.01 assumed 

𝛼𝑣 Probability of vector getting infection due to 

E 

0.01 assumed 

𝛼𝐸 The rate of shedding of infected individual in 

E 

0.0714 (Khan et al. 2021) 

𝛿𝑝 The death rate due to infection in possum 0.0714 (Khan et al. 2021) 

Table 1.  The definition and values for variables and parameters of the model. 

 The system of differential equations that describe the mathematical model can be considered 

as the following: 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
𝑑𝑆ℎ
𝑑𝑡

= ∏ℎ + 𝛾𝑅ℎ − 𝛽ℎ𝐼𝑣𝑆ℎ − 𝛽𝑝𝐼𝑝𝑆ℎ − 𝛼ℎ𝐸𝑆ℎ − 𝜇ℎ𝑆ℎ,

𝑑𝐼ℎ
𝑑𝑡

=  𝛽ℎ𝐼𝑣𝑆ℎ + 𝛽𝑝𝐼𝑝𝑆ℎ + 𝛼ℎ𝐸𝑆ℎ − (𝜂 + 𝜇ℎ)𝐼ℎ,

𝑑𝑅ℎ
𝑑𝑡

= 𝜂𝐼ℎ − (γ + 𝜇ℎ)𝑅ℎ,

𝑑𝑆𝑝
𝑑𝑡

= ∏𝑝 − 𝛽𝑝𝐼𝑣𝑆𝑝 − 𝛼𝑝𝐸𝑆𝑝 − 𝜇𝑝𝑆𝑝,

𝑑𝐼𝑝
𝑑𝑡

= 𝛽𝑝𝐼𝑣𝑆𝑝 + 𝛼𝑝𝐸𝑆𝑝 − (𝜇𝑝 + 𝛿𝑝)𝐼𝑝,

𝑑𝑆𝑣
𝑑𝑡

= ∏𝑣 − 𝛽𝑣𝐼𝑝𝑆𝑣 − 𝛽ℎ𝐼ℎ𝑆𝑣 − 𝜇𝑣𝑆𝑣,

𝑑𝐼𝑣
𝑑𝑡

= 𝛽𝑣𝐼𝑝𝑆𝑣 + 𝛽ℎ𝐼ℎ𝑆𝑣 − 𝜇𝑣𝐼𝑣,

𝑑𝐸

𝑑𝑡
= 𝛼𝐸𝐼𝑝 + 𝛼𝑣𝐼𝑣 − 𝜇𝐸𝐸,

  

}
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

  (1) 
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refer to initial conditions that are not negative: 

𝑆ℎ(0) = 𝑆ℎ0 ≥ 0, 𝐼ℎ(0) =  𝐼ℎ0  ≥  0, 𝑅ℎ(0) = 𝑅ℎ0 

𝑆𝑝(0) = 𝑆𝑝0 ≥ 0, 𝐼𝑝(0) = 𝐼𝑝0 ≥ 0, 

𝑆𝑣(0) = 𝑆𝑣0 ≥ 0, 𝐼𝑣(0) = 𝐼𝑣0 ≥ 0 and E(0) = 𝐸0 ≥ 0 

 

Mathematical analysis of the model 

In this section, we will split the full model into two models to make our work little 

difficult first one is possum vector environment model and the other is the full model by 

adding human system to previous system. 

3. Mathematical Analysis of only Possum, Vector and Environment (PVE) Model 

The following system equations show the model of PVE 

{
 
 
 

 
 
 
𝑑𝑆𝑝

𝑑𝑡
= ∏𝑝 − 𝛽𝑝𝐼𝑣𝑆𝑝 − 𝛼𝑝𝐸𝑆𝑝 − 𝜇𝑝𝑆𝑝,

𝑑𝐼𝑝

𝑑𝑡
= 𝛽𝑝𝐼𝑣𝑆𝑝 + 𝛼𝑝𝐸𝑆𝑝 − (𝜇𝑝 + 𝛿𝑝)𝐼𝑝,

𝑑𝑆𝑣

𝑑𝑡
= ∏𝑣 − 𝛽𝑣𝐼𝑝𝑆𝑣 − 𝛽ℎ𝐼ℎ𝑆𝑣 − 𝜇𝑣𝑆𝑣,

𝑑𝐼𝑣

𝑑𝑡
= 𝛽𝑣𝐼𝑝𝑆𝑣 + 𝛽ℎ𝐼ℎ𝑆𝑣 − 𝜇𝑣𝐼𝑣,

𝑑𝐸

𝑑𝑡
= 𝛼𝐸𝐼𝑝 + 𝛼𝑣𝐼𝑣 − 𝜇𝐸𝐸,

    

}
 
 
 

 
 
 

(2) 

3.1 Equilibria Points at Free Disease for only PVE Model 

The only PVE model's infection free equilibrium, denoted by 𝜀0𝑃𝑉𝐸 for system (2), must 

be established before we can establish results for the basic reproduction number 

computations. The following method can be used to accomplish this: 

𝜀0𝑃𝑉𝐸 = (𝑆𝑝
0, 𝐼𝑝

0, 𝑆𝑣
0, 𝐼𝑣

0, 𝐸0) 

free disease means there is no disease Then there is no infected items; 

𝐼𝑝=0 , 𝐼𝑣=0 , 𝐸=0 

Then the system will be 

𝑑𝑆𝑝

𝑑𝑡
= ∏𝑝 − 𝜇𝑝 𝑆𝑝

0 = 0    then 𝑆𝑝
0 =

∏𝑝

𝜇𝑝
 

𝑑𝑆𝑣

𝑑𝑡
= ∏𝑣  − 𝜇𝑣 𝑆𝑣

0 = 0      then 𝑆𝑣
0 =

∏𝑣

𝜇𝑣
 

Then 

𝜀0𝑃𝑉𝐸 = (
∏𝑝

𝜇𝑝
, 0,

∏𝑣

𝜇𝑣
, 0,0)                   # 

3.2 Basic Reproduction Number for only PVE Model 

To obtain the expressions for 𝑅0𝑃𝑉𝐸 , we employ the procedure and notation discussed in 

(Aatif Ali et al. 2022) as follows: 

https://aujes.journals.ekb.eg/
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𝐹 = [

0 𝛽𝑝𝑆𝑝
0 𝛼𝑝𝑆𝑝

0

𝛽𝑣𝑆𝑣
0 0 0

0 0 0

] , 𝑉 = [

𝜇
𝑝
+ 𝛿𝑝 0 0

0 𝜇𝑣 0
𝛼𝐸 𝛼𝑣 𝜇𝐸

],   

Then 

F𝑉−1= 

[
 
 
 
 
−αEαpSp

0

(μp+δp)μE

−βpSp
0

μv
+
αpαvSp

0

μEμv

αpSp
0

μE

βvSv
0

(μp+δp)
0 0

0 0 0 ]
 
 
 
 

 

For our suggested model (2), the spectral radius of the above should be the required basic 

reproduction number following some calculations provided by: 

𝑅0𝑃𝑉𝐸 = √(
∏𝑝(𝛽𝑣∏𝑣𝛼𝑣𝛼𝑝−𝜇𝑣

2𝛼𝐸𝛼𝑝−𝜇𝐸𝛽𝑣𝛽𝑝∏𝑣)

𝜇𝑣
2𝜇𝐸𝜇𝑝(𝜇𝑝+𝛿𝑝)

)  # 

3.3 Local Stability for only PVE Model at Free Disease 

The following theorem establishes the local stability for the specified system (2). 

Theorem 1. The model (2) is locally asymptotically stable, if 𝑅0𝑃𝑉𝐸 < 1 at the disease free 

case 𝜀0𝑃𝑉𝐸. 

Proof. At 𝜀0𝑃𝑉𝐸 , we have the following Jacobian system: 

𝐽(𝜀0𝑃𝑉𝐸) =

[
 
 
 
 
 
 
 
 
 
 −𝜇

𝑝
0          0 −𝛽

𝑝

∏
𝑝

𝜇
𝑝

−𝛼𝑝

∏
𝑝

𝜇
𝑝

0 −(𝜇
𝑝
+ 𝛿𝑝)   0 𝛽

𝑝

∏
𝑝

𝜇
𝑝

𝛼𝑝

∏
𝑝

𝜇
𝑝

0

0

0

−𝛽
𝑣
∏
𝑣

𝜇
𝑣

𝛽
𝑣
∏
𝑣

𝜇
𝑣
𝛼𝐸

 

−𝜇
𝑣

0 0

0 −𝜇
𝑣

0

0 𝛼𝑣 −𝜇
𝐸

]
 
 
 
 
 
 
 
 
 
 

 

The respective characteristics equation of J(𝜀0𝑃𝑉𝐸) is given by 

 𝜆3 + 𝑎1 𝜆
2 + 𝑎2 𝜆 + 𝑎3  = 0              (3) 

where 

• 𝑎1 = 𝜇𝐸 + 𝜇𝑣 + 𝜇𝑝 + 𝛿𝑝  , 

• 𝑎2 = 𝜇𝐸𝜇𝑣 + (𝜇𝐸 + 𝜇𝑣)(𝜇𝑝 + 𝛿𝑝) −
∏𝑝(𝛼𝑝𝛼𝐸𝜇𝑣−∏𝑣𝛽𝑝𝛽𝑣)

𝜇𝑣𝜇𝑝
, 

• 𝑎3 = (𝜇𝐸 + 𝜇𝑣)(𝜇𝑝 + 𝛿𝑝) (1 −
∏p(βv∏vαvαp−μv

2αEαp−μvβvβp∏v)

μEμpμv
2(μp+δp)

). 

while 𝜇𝐸 = 𝜇𝑣 numerically, then  

https://aujes.journals.ekb.eg/
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𝑎3 = (𝜇𝐸 + 𝜇𝑣)(𝜇𝑝 + 𝛿𝑝) (1 − 𝑅0𝑝𝑣𝑒
2 ) 

we obtain the roots for Eq. (3) as follows: −𝜇𝑝 < 0, −𝜇𝑣 < 0.  

Using the Routh-Hurwitz criteria (𝑎𝑗 > 0 for  j = 1,2,3 and further ( 𝑎1𝑎2 > 𝑎3). Therefore, the 

model (2) is locally asymptotically stable when 𝑅0𝑃𝑉𝐸 < 1  at the infection free equilibrium. # 

3.4 Endemic Equilibria for only PVE Model 

In order to obtain the expressions for the endemic case of model (2), we indicate its 

endemic equilibrium by 𝜀1𝑃𝑉𝐸 = ( 𝑆𝑝
∗ , 𝐼𝑝

∗ , 𝑆𝑣
∗ , 𝐼𝑣

∗ ,  𝐸∗) and is given by 

 

• 𝑆𝑝
∗ =

(𝜇𝐸+𝜇𝑣)(𝜇𝑝+𝛿𝑝) (𝛽𝑣𝐼𝑝
∗+𝜇𝑣)

𝛽𝑣∏𝑣𝛼𝑣𝛼𝑝+𝜇𝐸𝛽𝑝𝛽𝑣∏𝑣+𝛼𝐸𝛼𝑝𝜇𝑣(𝛽𝑣𝐼𝑝
∗+𝜇𝑣)

  , 

• 𝑆𝑣
∗ =

∏𝑣

(𝛽𝑣𝐼𝑝
∗+𝜇𝑣)

   , 

• 𝐼𝑣
∗ =

∏𝑣𝛽𝑣𝐼𝑝
∗

𝜇𝑣𝛽𝑣𝐼𝑝
∗+𝜇𝑣

2  , 

•  𝐸∗ =
𝛼𝐸𝐼𝑝

∗

𝜇𝐸
+

𝛼𝑣

𝜇𝐸
(

∏𝑣𝛽𝑣𝐼𝑝
∗

𝜇𝑣𝛽𝑣𝐼𝑝
∗+𝜇𝑣

2). 

using above equations and substituting in first equation in model (2): 

ƒ( 𝐼𝑝) =  𝑎𝐼𝑝
∗2 + 𝑏𝐼𝑝

∗ + 𝑐 = 0       (4) 

where 
• 𝑎 = 𝛽𝑣𝛼𝐸𝛼𝑝𝜇𝑣(𝜇𝑝 + 𝛿𝑝), 

• 𝑏 = ∏𝑝𝛽𝑣𝛼𝐸𝛼𝑝𝜇𝑣 +∏𝑣𝜇𝐸𝛽𝑝𝛽𝑣(𝜇𝑝 + 𝛿𝑝) + 𝜇𝑣
2𝛼𝐸𝛼𝑝(𝜇𝑝 + 𝛿𝑝) + ∏𝑣𝛽𝑣𝛼𝑣𝛼𝑝(𝜇𝑝 +

𝛿𝑝) + 𝜇𝐸𝜇𝑝𝜇𝑣𝛽𝑣(𝜇𝑝 + 𝛿𝑝), 

• 𝑐 = 𝜇𝐸𝜇𝑝𝜇𝑣
2(𝜇𝑝 + 𝛿𝑝)(1 − (

∏𝑝(𝛽𝑣∏𝑣𝛼𝑣𝛼𝑝−𝜇𝑣
2𝛼𝐸𝛼𝑝−𝜇𝐸𝛽𝑣𝛽𝑝∏𝑣)

𝜇𝑣
2𝜇𝐸𝜇𝑝(𝜇𝑝+𝛿𝑝)

)) = 𝜇𝐸𝜇𝑝𝜇𝑣
2(𝜇𝑝 + 𝛿𝑝)(1 −

𝑅0𝑝𝑣𝑒
2  ) 

                                                                                                                   # 

In (4), the coefficient 𝑎 is positive, but the coefficient 𝑐 's positivity depends on whether 

𝑅0𝑝𝑣𝑒<1  or negative. Therefore, the positive solution of (4) can be determined by the sign of 

𝑏 and 𝑐. Two solutions, one positive and one negative, can be found for (4) in the case where 

𝑅0𝑝𝑣𝑒>1. There is a solution of the form 𝐼𝑝
∗ = −𝑏/𝑎 for the case where 𝑐 =  0  if and only if 

𝑅0𝑝𝑣𝑒 =  1, when 𝑏 < 0. There is an interval for 𝑅0𝑝𝑣𝑒 with two equilibria, indicating that the 

equilibria depend on the changing value of 𝑅0𝑝𝑣𝑒, 

𝐼𝑝1,2
∗ =

−𝑏 + √(𝑏2 − 4𝑎𝑐)

2𝑎
,
−𝑏 − √(𝑏2 − 4𝑎𝑐)

2𝑎
 

We have no solution for the Eq. (4) in such a case when c > 0 and either b ≥ 0 or b2 < 4ac. #                                                                                                    
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3.5 Local Stability of the Endemic Equilibrium of only PVE Model: 

Theorem 2. The possum model (2) at 𝜀1𝑃𝑉𝐸 is locally asymptotically stable if 𝑅0𝑝𝑣𝑒>1. 

Proof. at 𝜀1𝑃𝑉𝐸 , the following Jacobian matrix is presented, 

𝐽(𝜀1𝑃𝑉𝐸) =  

[
 
 
 
 
−𝑄1 0   0 −𝑄5 −𝑄6
𝑄2 −𝑄3 0  𝑄5 𝑄6
0
0
0

−𝑄7
𝑄7
𝛼𝐸

 

−𝑄4 0 0
𝑄8 −𝜇𝑣 0
0 𝛼𝑣 −𝜇𝐸]

 
 
 
 

 

where 

𝑄1 = 𝛽𝑝𝐼𝑣
∗ + 𝛼𝑝 𝐸

∗ + 𝜇𝑝, 𝑄2 = 𝛽𝑝𝐼𝑣
∗ + 𝛼𝑝 𝐸

∗  , 𝑄3 = (𝜇𝑝 + 𝛿𝑝), 

 𝑄4 = 𝛽𝑣𝐼𝑝
∗ − 𝜇𝑣,               𝑄5 = 𝛽𝑝𝑆𝑝

∗,                𝑄6 = 𝛼𝑝𝑆𝑝
∗ , 

 𝑄7 = 𝛽𝑣𝑆𝑣
∗         and          𝑄8 = 𝛽𝑣𝐼𝑝

∗ . 

The characteristics equation of J(𝜀1𝑃𝑉𝐸) is 

 𝜆5 + 𝑘1 𝜆
4 + 𝑘2 𝜆

3 + 𝑘3 𝜆
2 + 𝑘4 𝜆 + 𝑘5  = 0       , where 

• 𝑘1 = 𝜇𝐸 + 𝜇𝑣 + 𝑄1 + 𝑄3 + 𝑄4   , 

• 𝑘2 = (𝜇𝐸 + 𝜇𝑣)𝑄4 + (𝑄1 + 𝑄3)𝑄4 + 𝜇𝐸𝜇𝑣 + (𝜇𝐸 + 𝜇𝑣) + (𝑄1 + 𝑄3) + 𝑄1𝑄3 , 

• 𝑘3 = 𝜇𝐸𝜇𝑣𝑄4 + (𝜇𝐸 + 𝜇𝑣)(𝑄1 + 𝑄3)𝑄4 + 𝑄1𝑄3𝑄4 − (𝜇𝐸 + 𝜇𝑣)𝑄1𝑄3 − 𝛼𝐸𝑄6(𝑄2 − 𝑄1) , 

• 𝑘4 =(𝜇𝐸 + 𝜇𝑣)𝑄1𝑄3𝑄4 − 𝜇𝐸𝜇𝑣𝑄1𝑄3 − 𝜇𝐸𝜇𝑣(𝑄1 + 𝑄3) + 𝑄5𝑄7(𝑄1 − 𝑄2)(𝑄4 − 𝑄8) +

𝛼𝐸𝑄6(𝑄2 − 𝑄1)(𝑄4 − 𝜇𝑣), 

• 𝑘5 = 𝜇𝐸𝜇𝑣𝑄1𝑄3𝑄4 + 𝜇𝐸𝜇𝑣𝑄4(𝑄1 + 𝑄3) + 𝑄5𝑄7𝜇𝐸(𝑄1 − 𝑄2)(𝑄4 − 𝑄8)  −

𝛼𝑣𝑄6𝑄7(𝑄2 − 𝑄1)(𝑄4 − 𝑄8) + 𝛼𝐸𝑄6(𝑄2 − 𝑄1)𝑄4𝜇𝑣 .  # 

𝑘𝑖 > 0 for 𝑖 = 1, 2, ...5  where 

𝐻1 = 𝑘1   ,  𝐻2 = [
𝑘1 1
𝑘3 𝑘2

],𝐻3 = [

𝑘1 1 0
𝑘3 𝑘2 𝑘1
𝑘5 𝑘4 𝑘3

] 

,𝐻4 = [

𝑘1 1 0 0
𝑘3 𝑘2 1 0

𝑘5
0

𝑘4
0

𝑘3
𝑘5

𝑘2
𝑘4

] ,𝐻5 =

[
 
 
 
 
𝑘1 1   0 0 0
𝑘3 𝑘2 𝑘1 1 0

𝑘5
0
0

𝑘4
0
0

 

𝑘3 𝑘2 𝑘1
𝑘5 𝑘4 𝑘3
0 0 𝑘5]
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These requirements can be met by using algebraic computation software to ensure that 𝑘𝑖  >

  0 𝑓𝑜𝑟 𝑖 =  1, 2, . . .5. The system PVE (2) is proven to be locally asymptotically stable at the 

endemic state if each of these requirements is met. # 

4. Mathematical Analysis of the Full Model  

In the following section, we will deal with full model (1) at free disease and in case of 

disease. 

4.1 Equilibria Points at Free Disease of the Full Model 

The infection free equilibrium, represented by ε0 for system (1), must be obtained before 

we can establish results for the basic reproduction number computations. This can be done in 

the following manner: 

𝜀0 = (𝑆ℎ
0, 𝐼ℎ

0, 𝑅ℎ
0, 𝑆𝑝

0, 𝐼𝑝
0, 𝑆𝑣

0, 𝐼𝑣
0, 𝐸0) 

free disease means there is no disease Then there is no infected items; 

𝐼ℎ = 0 , 𝐼𝑝 = 0 , 𝐼𝑣 = 0 , 𝐸 = 0 

Then the system will be  

𝑑𝑆ℎ

𝑑𝑡
= ∏ℎ − 𝜇ℎ𝑆ℎ

0 = 0          then 𝑆ℎ
0=  

∏ℎ

𝜇ℎ
 

𝑑𝑅ℎ

𝑑𝑡
 = −(𝛾+𝜇ℎ)𝑅ℎ

0= 0            then 𝑅ℎ
0= 0 

𝑑𝑆𝑝

𝑑𝑡
 =  ∏𝑝 − 𝜇𝑝𝑆𝑝

0 =  0        then 𝑆𝑝
0 =  

∏𝑝

𝜇𝑝
 

𝑑𝑆𝑣

𝑑𝑡
 =  ∏𝑣  −  𝜇𝑣𝑆𝑣

0 =  0       then 𝑆𝑣
0 =  

∏𝑣

𝜇𝑣
 

then 𝜀0=(
∏ℎ

𝜇ℎ
,0,0,

∏𝑝

𝜇𝑝
,0,

∏𝑣

𝜇𝑣
,0,0) 

4.2 Basic Reproduction Number of the Full Model 

To obtain the expressions for 𝑅0, we employ the procedure and notation discussed in 

(Aatif Ali et al. 2022) as follows: 

 

F=

[
 
 
 
 
0 𝛽𝑝𝑆ℎ

0 𝛽ℎ𝑆ℎ
0 𝛼ℎ𝑆ℎ

0

0 0 𝛽𝑝𝑆𝑝
0 𝛼𝑝𝑆𝑝

0

𝛽ℎ𝑆𝑣
0

0
𝛽𝑣𝑆𝑣

0

0

0
0

      0
      0 ]

 
 
 
 

 ,V=[

𝜂 + 𝜇ℎ 0 0          0
0 𝜇𝑝 + 𝛿𝑝 0           0

0
0

0
−𝛼𝐸

𝜇𝑣
−𝛼𝑣

      0
      𝜇𝐸

] 

Inverse of V: 
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 𝑉−1 =

[
 
 
 
 
 
 
 
 

1

𝜂 + 𝜇ℎ
0 0          0

0
1

𝜇𝑝 + 𝛿𝑝
0           0

0
0

0
𝛼𝐸

𝜇𝐸(𝜇𝑝 + 𝛿𝑝)

1

𝜇𝑣
−𝛼𝑣
𝜇𝐸𝜇𝑣

      0

      
1

𝜇𝐸
]
 
 
 
 
 
 
 
 

 

Then 

𝐹𝑉−1 =

[
 
 
 
 
 
 
 0

∏ℎ(𝜇𝐸𝛽𝑝 + 𝛼𝐸𝛼ℎ)

𝜇ℎ𝜇𝐸(𝜇𝑝 + 𝛿𝑝)

∏ℎ(𝜇𝐸𝛽ℎ − 𝛼𝑣𝛼ℎ)

𝜇ℎ𝜇𝐸𝜇𝑣
         

∏ℎ𝛼ℎ
𝜇ℎ𝜇𝐸

0
∏𝑝𝛼𝑝𝛼𝐸

𝜇𝑝𝜇𝐸(𝜇𝑝 + 𝛿𝑝)

∏𝑝(𝜇𝐸𝛽𝑝 − 𝛼𝑝𝛼𝑣)

𝜇𝑝𝜇𝐸𝜇𝑣
          

∏𝑝𝛼𝑝
𝜇𝑝𝜇𝐸

∏𝑣𝛽𝑝
𝜇𝑣(𝜂 + 𝜇ℎ)

0

∏𝑣𝛽𝑣
𝜇𝑣(𝜇𝑝 + 𝛿𝑝)

0

0
0

                   0
                   0

]
 
 
 
 
 
 
 

 

This gives 𝑅0 as the positive root of the cubic polynomial : 

𝐺(𝑍) = 𝑍3 − 𝑎 𝑍2 − 𝑏𝑍 − 𝑐 = 0    

then 𝐺(1) =  1 − (𝑎 + 𝑏 + 𝑐)  = 0    

then 𝑅0  =  (𝑅0𝑎 + 𝑅0𝑏 + 𝑅0𝑐)   

where  

• 𝑅0𝑎 =
∏𝑝𝛼𝑝𝛼𝐸

𝜇𝑝𝜇𝐸(𝜇𝑝+𝛿𝑝)
 , 

• 𝑅0𝑏 = 
∏𝑣∏ℎ𝛽𝑝

𝜇𝑣𝜇ℎ(𝜂+𝜇ℎ)
 (
𝜇𝐸𝛽ℎ−𝛼𝑣𝛼ℎ

𝜇𝑣𝜇𝐸
), 

• 𝑅0𝑐=
∏𝑝

𝜇𝑣
2𝜇𝐸𝜇𝑝𝜇ℎ(𝜂+𝜇ℎ)(𝜇𝑝+𝛿𝑝)

[𝜇𝐸𝛽𝑣𝛽𝑝∏𝑣𝜇𝐸𝜇𝑣𝜇ℎ𝛽𝑣(𝜂 + 𝜇ℎ) − ∏𝑣𝛼𝑣𝛼𝑝𝜇𝐸𝜇𝑣𝜇ℎ(𝜂 + 𝜇ℎ) 

−𝜇𝑣
2𝛼𝐸𝛼𝑝(𝜇𝑝𝜇𝑣𝜇ℎ𝛽𝑝(𝜂 + 𝜇ℎ)(𝜇𝑝 + 𝛿𝑝)(𝜇𝐸𝛽ℎ − 𝛼𝑣𝛼ℎ)) − 𝜇𝑣𝛽𝑝∏𝑣∏ℎ(𝛼𝑣𝛼𝑝 −

 𝜇𝐸𝛽𝑝)(𝜇𝐸𝛽𝑝 + 𝛼𝐸𝛼ℎ)]                                             # 

you can see 𝑅0𝑃𝑉𝐸 inside c. 

4.3 Local Stability of the Full Model 

The local stability for the given system (1) has been established in the following theorem. 

Theorem 3. The model (1) is locally asymptotically stable, if 𝑅0 < 1 at the disease free 

case 𝜀0. 

Proof. At 𝜀0 , we have the following Jacobian system: 
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𝐽(𝜀0) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

−𝜇ℎ 0 𝛾 0 −𝛽𝑝
∏ℎ

𝜇ℎ
 0 −𝛽ℎ

∏ℎ

𝜇ℎ
 −𝛼ℎ

∏ℎ

𝜇ℎ
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0 −(𝜂 + 𝜇ℎ) 0 0 𝛽𝑝
∏ℎ

𝜇ℎ
 0 𝛽ℎ

∏ℎ

𝜇ℎ
 𝛼ℎ

∏ℎ

𝜇ℎ
 

0 𝜂 −(𝛾 + 𝜇ℎ) 0 0 0 0 0 

0 0 0 −𝜇𝑝 0 0 −𝛽𝑝
∏𝑝

𝜇𝑝
 −𝛼𝑝

∏𝑝

𝜇𝑝
 

0 0 0 0 −(𝜇𝑝 + 𝛿𝑝) 0 𝛽𝑝
∏𝑝

𝜇𝑝
 𝛼𝑝

∏𝑝

𝜇𝑝
 

0 −𝛽ℎ
∏𝑣

𝜇𝑣
 0 0 −𝛽𝑣

∏𝑣

𝜇𝑣
 −𝜇𝑣 0 0 

0 𝛽ℎ
∏𝑣

𝜇𝑣
 0 0 𝛽𝑣

∏𝑣

𝜇𝑣
 0 −𝜇𝑣 0 

0 0 0 0 𝛼𝐸 0 𝛼𝑣 −𝜇𝐸 

 

The characteristics equation of J(ε0) is 

 𝜆4 + 𝑎1 𝜆
3 + 𝑎2 𝜆

2 + 𝑎3 𝜆 + 𝑎4 = 0 

where 

• 𝑎1 =  𝜂 + 𝜇ℎ + 𝜇𝐸 + 𝜇𝑣 + 𝜇𝑝 + 𝛿𝑝 , 

• 𝑎2 = (𝜂 + 𝜇ℎ)(𝜇𝐸 + 𝜇𝑣 + (𝜇𝑝 + 𝛿𝑝)) − 𝛼𝐸𝛼𝑝  
∏𝑝

𝜇𝑝
+ 𝜇𝐸𝜇𝑣 + (𝜇𝐸 + 𝜇𝑣)(𝜇𝑝 + 𝛿𝑝) +

𝛽𝑣𝛽𝑝
∏𝑝

𝜇𝑝

∏𝑣

𝜇𝑣
− 𝛽ℎ

2 ∏ℎ

𝜇ℎ

∏𝑣

𝜇𝑣
, 

• 𝑎3= (𝜂 + 𝜇ℎ)[(𝜇𝐸𝜇𝑣 + 𝜇𝐸(𝜇𝑝 + 𝛿𝑝) + 𝜇𝑣(𝜇𝑝 + 𝛿𝑝) − 𝛼𝐸𝛼𝑝  
∏𝑝

𝜇𝑝
+ 𝛽𝑣𝛽𝑝

∏𝑝

𝜇𝑝

∏𝑣

𝜇𝑣
)] −

 𝛼𝑣𝛼𝑝𝛽𝑣
∏𝑝

𝜇𝑝

∏𝑣

𝜇𝑣
− 𝛼𝐸𝛼𝑝𝜇𝑣

∏𝑝

𝜇𝑝
+ 𝜇𝐸𝜇𝑣 (𝜇𝑝 + 𝛿𝑝) − 𝛽𝑣𝛽𝑝𝜇𝐸

∏𝑝

𝜇𝑝

∏𝑣

𝜇𝑣
− 𝛼𝑣𝛼ℎ𝛽ℎ

∏ℎ

𝜇ℎ

∏𝑣

𝜇𝑣
−

𝛽ℎ
2𝜇𝐸

∏ℎ

𝜇ℎ

∏𝑣

𝜇𝑣
− 𝛽𝑝

2𝛽ℎ
∏𝑝

𝜇𝑝

∏𝑣

𝜇𝑣

∏ℎ

𝜇ℎ
− 𝛽ℎ

2 ∏ℎ

𝜇ℎ

∏𝑣

𝜇𝑣
(𝜇𝑝 + 𝛿𝑝), 

• 𝑎4 =  (𝜂 + 𝜇ℎ)𝜇𝐸𝜇𝑣(𝜇𝑝 + 𝛿𝑝)  − (𝜂 + 𝜇ℎ)𝛼𝑣𝛼𝑝𝛽𝑣
∏𝑝

𝜇𝑝

∏𝑣

𝜇𝑣
− (𝜂 + 𝜇ℎ)𝛼𝐸𝛼𝑝𝜇𝑣

∏𝑝

𝜇𝑝
− (𝜂 +

𝜇ℎ)𝛽𝑣𝛽𝑝𝜇𝐸
∏𝑝

𝜇𝑝

∏𝑣

𝜇𝑣
 −

∏ℎ

𝜇ℎ

∏𝑣

𝜇𝑣
[𝛼𝑣𝛼ℎ𝛽ℎ(𝜇𝑝 + 𝛿𝑝) + 𝛼𝐸𝛼ℎ𝛽ℎ𝛽𝑝

∏𝑝

𝜇𝑝
+ 𝛼𝑣𝛼𝑝𝛽𝑝𝛽ℎ −

𝛼𝐸𝛼𝑝𝛽ℎ
2 ∏𝑝

𝜇𝑝
+ 𝜇𝐸𝛽ℎ𝛽𝑝

2 ∏𝑝

𝜇𝑝
+ 𝛽ℎ

2𝜇𝐸(𝜇𝑝 + 𝛿𝑝)]  
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then   𝑎4 = (𝜂 + 𝜇ℎ)[𝜇𝑣 − 𝛼𝑣𝛼𝑝𝛽𝑣
∏𝑝

𝜇𝑝

∏𝑣

𝜇𝑣
− 𝛽𝑣𝛽𝑝

∏𝑝

𝜇𝑝

∏𝑣

𝜇𝑣(𝜇𝑝+𝛿𝑝)
− 𝑅0𝑎] +

 𝛼𝐸𝛼𝑝𝛽ℎ
2 ∏𝑝∏ℎ∏𝑣

𝜇𝑝𝜇𝐸𝜇ℎ𝜇𝑣(𝜇𝑝+𝛿𝑝)
− 𝛼𝐸𝛼ℎ𝛽ℎ𝛽𝑝

∏𝑝∏𝑣∏ℎ

𝜇𝑝𝜇ℎ𝜇𝑣𝜇𝐸(𝜇𝑝+𝛿𝑝)
− 𝛼𝑣𝛼𝑝𝛽𝑝𝛽ℎ

∏𝑣∏ℎ

𝜇ℎ𝜇𝑣𝜇𝐸(𝜇𝑝+𝛿𝑝)
   −

∏𝑣∏ℎ𝛽𝑝

𝜇ℎ𝜇𝑣
2𝜇𝐸(𝜂+𝜇ℎ)

[𝛼𝑣𝛼ℎ(
−𝜇𝑣𝛽ℎ(𝜂+𝜇ℎ)

𝛽𝑝
− 𝜇𝐸𝛽ℎ

∏𝑝𝜇𝑣𝛽𝑝(𝜂+𝜇ℎ)

𝜇𝑝(𝜇𝑝+𝛿𝑝)
)] 

  You can also see 𝑅0𝑏 in the last term of 𝑎4 .                                                                                                                      

Applying Routh-Hurwitz criteria(𝑎𝑗 > 0 for j = 1, ..., 4 and further 𝑎1𝑎2𝑎3 >𝑎4). 

Thus, the model when 𝑅0  < 1 at the infection free equilibrium is locally asymptotically 

stable. 

4.4 Endemic Equilibria of the Full Model 

To have the expressions for the model (1) at the endemic case, we denote its endemic 

equilibrium by 

𝜀1 = (𝑆ℎ
∗ , 𝐼ℎ

∗  , 𝑅ℎ
∗  , 𝑆𝑝

∗ , 𝐼𝑝
∗ , 𝑆𝑣

∗ , 𝐼𝑣
∗ ,  𝐸∗) 

and is given by 

• 𝑆ℎ
∗ = 

1

𝜇ℎ
(∏ℎ + [

𝛾𝜂

𝛾+𝜇ℎ
− (𝜂 + 𝜇ℎ)]𝐼ℎ

∗) , 

 

• 𝑅ℎ
∗ = 

𝜂

𝛾+𝜇ℎ
𝐼ℎ
∗ , 

• 𝑆𝑝
∗ =

∏𝑝

𝜇𝑝
− 

(𝜇𝑝+𝛿𝑝)

𝜇𝑝
[
𝐼ℎ
∗(

∏𝑣𝛽𝑝𝛽ℎ

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

+
∏𝑣𝛽ℎ𝛼𝑣𝛼𝑝

𝜇𝑣
2 )+

∏𝑣𝛽𝑝

𝜇𝑣(𝜇𝑝+𝛿𝑝)
+
∏𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
+

𝜇𝑝

(𝜇𝑝+𝛿𝑝)

𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)
−

∏𝑣𝛽𝑝𝛽𝑣

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

−
∏𝑣𝛽𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
2

] , 

• 𝐼𝑝
∗ = 

𝐼ℎ
∗(

∏𝑣𝛽𝑝𝛽ℎ

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

+
∏𝑣𝛽ℎ𝛼𝑣𝛼𝑝

𝜇𝑣
2 )+

∏𝑣𝛽𝑝

𝜇𝑣(𝜇𝑝+𝛿𝑝)
+
∏𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
+

𝜇𝑝

(𝜇𝑝+𝛿𝑝)

𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)
−

∏𝑣𝛽𝑝𝛽𝑣

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

−
∏𝑣𝛽𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
2

 , 

• 𝑆𝑣
∗= 

∏𝑣

𝜇𝑣
− [

𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)

[
𝛽𝑝

(𝜇𝑝+𝛿𝑝)
+𝛼𝑣𝛼𝑝][

𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)
−

∏𝑣𝛽𝑝𝛽𝑣

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

−
∏𝑣𝛽𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
2 ]

 

[
𝐼ℎ
∗(

∏𝑣𝛽𝑝𝛽ℎ

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

+
∏𝑣𝛽ℎ𝛼𝑣𝛼𝑝

𝜇𝑣
2 )+

∏𝑣𝛽𝑝

𝜇𝑣(𝜇𝑝+𝛿𝑝)
+
∏𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
+

𝜇𝑝

(𝜇𝑝+𝛿𝑝)

(𝜇𝑝+𝛿𝑝)
] −

𝜇𝑝

(𝜇𝑝+𝛿𝑝)

𝛽𝑝

(𝜇𝑝+𝛿𝑝)
+𝛼𝑣𝛼𝑝

], 

• 𝐼𝑣
∗=

𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)

[
𝛽𝑝

(𝜇𝑝+𝛿𝑝)
+𝛼𝑣𝛼𝑝][

𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)
−

∏𝑣𝛽𝑝𝛽𝑣

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

−
∏𝑣𝛽𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
2 ]

 

[
𝐼ℎ
∗(

∏𝑣𝛽𝑝𝛽ℎ

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

+
∏𝑣𝛽ℎ𝛼𝑣𝛼𝑝

𝜇𝑣
2 )+

∏𝑣𝛽𝑝

𝜇𝑣(𝜇𝑝+𝛿𝑝)
+
∏𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
+

𝜇𝑝

(𝜇𝑝+𝛿𝑝)

(𝜇𝑝+𝛿𝑝)
]−

𝜇𝑝

(𝜇𝑝+𝛿𝑝)

𝛽𝑝

(𝜇𝑝+𝛿𝑝)
+𝛼𝑣𝛼𝑝

 , 
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•  𝐸∗=  
1

𝜇𝐸
[

𝜇𝑝𝛼𝑣

∏𝑝
−

𝛼𝐸𝛼𝑝𝛼𝑣

𝜇𝐸(𝜇𝑝+𝛿𝑝)

[
𝛽𝑝

(𝜇𝑝+𝛿𝑝)
+𝛼𝑣𝛼𝑝][

𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)
−

∏𝑣𝛽𝑝𝛽𝑣

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

−
∏𝑣𝛽𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
2 ]

−

𝜇𝑝𝛼𝑣

(𝜇𝑝+𝛿𝑝)

𝛽𝑝

(𝜇𝑝+𝛿𝑝)
+𝛼𝑣𝛼𝑝

 

+
𝛼𝐸

[
𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)
−

∏𝑣𝛽𝑝𝛽𝑣

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

−
∏𝑣𝛽𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
2 ]

][
𝐼ℎ
∗(

∏𝑣𝛽𝑝𝛽ℎ

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

+
∏𝑣𝛽ℎ𝛼𝑣𝛼𝑝

𝜇𝑣
2 )+

∏𝑣𝛽𝑝

𝜇𝑣(𝜇𝑝+𝛿𝑝)
+
∏𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
+

𝜇𝑝

(𝜇𝑝+𝛿𝑝)

(𝜇𝑝+𝛿𝑝)
], 

 
substituting in 𝐼ℎ (second equation in model(1)) 

ƒ( 𝐼ℎ) =  𝑎𝐼ℎ
∗2 + 𝑏𝐼ℎ

∗ + 𝑐 = 0         where, 

 

• 𝑎 =  
(
∏𝑣𝛽𝑝𝛽ℎ

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

+
∏𝑣𝛽ℎ𝛼𝑣𝛼𝑝

𝜇𝑣
2 )[

𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)
]𝛽ℎ

[
𝛽𝑝

(𝜇𝑝+𝛿𝑝)
+𝛼𝑣𝛼𝑝][

𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)
−

∏𝑣𝛽𝑝𝛽𝑣

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

−
∏𝑣𝛽𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
2 ]𝜇ℎ

[
𝛾𝜂

(𝛾+𝜇ℎ)
− (𝜂 + 𝜇ℎ)] 

+
(
∏𝑣𝛽𝑝𝛽ℎ

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

+
∏𝑣𝛽ℎ𝛼𝑣𝛼𝑝

𝜇𝑣
2 )𝛽𝑝

[
𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)
−

∏𝑣𝛽𝑝𝛽𝑣

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

−
∏𝑣𝛽𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
2 ]𝜇ℎ

[
𝛾𝜂

(𝛾+𝜇ℎ)
− (𝜂 + 𝜇ℎ)] 

+
𝛼ℎ

𝜇ℎ𝜇𝐸
(
∏𝑣𝛽𝑝𝛽ℎ

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

+
∏𝑣𝛽ℎ𝛼𝑣𝛼𝑝

𝜇𝑣
2 )[

𝜇𝑝𝛼𝑣

∏𝑝
−

𝛼𝐸𝛼𝑝𝛼𝑣

𝜇𝐸(𝜇𝑝+𝛿𝑝)

[
𝛽𝑝

(𝜇𝑝+𝛿𝑝)
+𝛼𝑣𝛼𝑝][

𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)
−

∏𝑣𝛽𝑝𝛽𝑣

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

−
∏𝑣𝛽𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
2 ]

 

−

𝜇𝑝𝛼𝑣

(𝜇𝑝+𝛿𝑝)

𝛽𝑝

(𝜇𝑝+𝛿𝑝)
+𝛼𝑣𝛼𝑝

+
𝛼𝐸

[
𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)
−

∏𝑣𝛽𝑝𝛽𝑣

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

−
∏𝑣𝛽𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
2 ]

][
𝛾𝜂

(𝛾+𝜇ℎ)
− (𝜂 + 𝜇ℎ)], 

 

 

• 𝑏 =
∏ℎ𝛽ℎ

𝜇ℎ

(
∏𝑣𝛽𝑝𝛽ℎ

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

+
∏𝑣𝛽ℎ𝛼𝑣𝛼𝑝

𝜇𝑣
2 )(

𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)
)

[
𝛽𝑝

(𝜇𝑝+𝛿𝑝)
+𝛼𝑣𝛼𝑝][

𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)
−

∏𝑣𝛽𝑝𝛽𝑣

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

−
∏𝑣𝛽𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
2 ]

 

+
(
𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)
)(

∏𝑣𝛽𝑝

𝜇𝑣(𝜇𝑝+𝛿𝑝)
+
∏𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
+

𝜇𝑝

(𝜇𝑝+𝛿𝑝)
)

[
𝛽𝑝

(𝜇𝑝+𝛿𝑝)
+𝛼𝑣𝛼𝑝][

𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)
−

∏𝑣𝛽𝑝𝛽𝑣

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

−
∏𝑣𝛽𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
2 ]

[
𝛾𝛽ℎ𝜂

𝜇ℎ(𝛾+𝜇ℎ)
−
𝛽ℎ(𝜂+𝜇ℎ)

𝜇ℎ
] 

−

𝜇𝑝

(𝜇𝑝+𝛿𝑝)
𝛽ℎ

𝜇ℎ[
𝛽𝑝

(𝜇𝑝+𝛿𝑝)
+𝛼𝑣𝛼𝑝]

[
𝛾𝜂

(𝛾+𝜇ℎ)
− (𝜂 + 𝜇ℎ)]+

(
∏𝑣𝛽𝑝𝛽ℎ

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

+
∏𝑣𝛽ℎ𝛼𝑣𝛼𝑝

𝜇𝑣
2 )∏ℎ𝛽𝑝

[
𝛽𝑝

(𝜇𝑝+𝛿𝑝)
+𝛼𝑣𝛼𝑝][

𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)
−

∏𝑣𝛽𝑝𝛽𝑣

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

−
∏𝑣𝛽𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
2 ]𝜇ℎ

 

+
(

∏𝑣𝛽𝑝

𝜇𝑣(𝜇𝑝+𝛿𝑝)
+
∏𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
+

𝜇𝑝

(𝜇𝑝+𝛿𝑝)
)𝛽𝑝

[
𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)
−

∏𝑣𝛽𝑝𝛽𝑣

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

−
∏𝑣𝛽𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
2 ]𝜇ℎ

[
𝜂

(𝛾+𝜇ℎ)
− (𝜂 + 𝜇ℎ)] 

+
(
∏𝑣𝛽𝑝𝛽ℎ

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

+
∏𝑣𝛽ℎ𝛼𝑣𝛼𝑝

𝜇𝑣
2 )𝛼ℎ

𝜇ℎ𝜇𝐸
[

𝜇𝑝𝛼𝑣

∏𝑝
−

𝛼𝐸𝛼𝑝𝛼𝑣

𝜇𝐸(𝜇𝑝+𝛿𝑝)

[
𝛽𝑝

(𝜇𝑝+𝛿𝑝)
+𝛼𝑣𝛼𝑝][

𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)
−

∏𝑣𝛽𝑝𝛽𝑣

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

−
∏𝑣𝛽𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
2 ]
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−

𝜇𝑝𝛼𝑣

(𝜇𝑝+𝛿𝑝)

𝛽𝑝

(𝜇𝑝+𝛿𝑝)
+𝛼𝑣𝛼𝑝

+
𝛼𝐸

[
𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)
−

∏𝑣𝛽𝑝𝛽𝑣

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

−
∏𝑣𝛽𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
2 ]

][∏ℎ+
𝛾𝜂

(𝛾+𝜇ℎ)
]  −

(
∏𝑣𝛽𝑝

𝜇𝑣(𝜇𝑝+𝛿𝑝)
+
∏𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
+

𝜇𝑝

(𝜇𝑝+𝛿𝑝)
)(𝜂+𝜇ℎ)𝛼ℎ

𝜇ℎ𝜇𝐸
[

𝜇𝑝𝛼𝑣

∏𝑝
−

𝛼𝐸𝛼𝑝𝛼𝑣

𝜇𝐸(𝜇𝑝+𝛿𝑝)

[
𝛽𝑝

(𝜇𝑝+𝛿𝑝)
+𝛼𝑣𝛼𝑝][

𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)
−

∏𝑣𝛽𝑝𝛽𝑣

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

−
∏𝑣𝛽𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
2 ]

 

−

𝜇𝑝𝛼𝑣

(𝜇𝑝+𝛿𝑝)

𝛽𝑝

(𝜇𝑝+𝛿𝑝)
+𝛼𝑣𝛼𝑝

+
𝛼𝐸

[
𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)
−

∏𝑣𝛽𝑝𝛽𝑣

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

−
∏𝑣𝛽𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
2 ]

][∏ℎ+
𝛾𝜂

(𝛾+𝜇ℎ)
] − (𝜂 + 𝜇ℎ), 

 

• c = 
∏ℎ𝛽ℎ

𝜇ℎ
(

[
𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)
][

∏𝑣𝛽𝑝

𝜇𝑣(𝜇𝑝+𝛿𝑝)
+
∏𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
+

𝜇𝑝

(𝜇𝑝+𝛿𝑝)
]

[
𝛽𝑝

(𝜇𝑝+𝛿𝑝)
+𝛼𝑣𝛼𝑝][

𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)
−

∏𝑣𝛽𝑝𝛽𝑣

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

−
∏𝑣𝛽𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
2 ]

−

𝜇𝑝

(𝜇𝑝+𝛿𝑝)

[
𝛽𝑝

(𝜇𝑝+𝛿𝑝)
+𝛼𝑣𝛼𝑝]

) 

+
∏ℎ[

∏𝑣𝛽𝑝

𝜇𝑣(𝜇𝑝+𝛿𝑝)
+
∏𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
+

𝜇𝑝

(𝜇𝑝+𝛿𝑝)
]

𝜇ℎ
[

𝛽𝑃

[
𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)
−

∏𝑣𝛽𝑝𝛽𝑣

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

−
∏𝑣𝛽𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
2 ]

 

+  
𝛼ℎ

𝜇𝐸
 [

𝜇𝑝𝛼𝑣

∏𝑝
−

𝛼𝐸𝛼𝑝𝛼𝑣

𝜇𝐸(𝜇𝑝+𝛿𝑝)

[
𝛽𝑝

(𝜇𝑝+𝛿𝑝)
+𝛼𝑣𝛼𝑝][

𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)
−

∏𝑣𝛽𝑝𝛽𝑣

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

−
∏𝑣𝛽𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
2 ]

     −

𝜇𝑝𝛼𝑣

(𝜇𝑝+𝛿𝑝)

𝛽𝑝

(𝜇𝑝+𝛿𝑝)
+𝛼𝑣𝛼𝑝

+

𝛼𝐸

[
𝜇𝑝

∏𝑝
−

𝛼𝐸𝛼𝑝

𝜇𝐸(𝜇𝑝+𝛿𝑝)
−

∏𝑣𝛽𝑝𝛽𝑣

𝜇𝑣
2(𝜇𝑝+𝛿𝑝)

−
∏𝑣𝛽𝑣𝛼𝑣𝛼𝑝

𝜇𝑣
2 ]

]] 

 

The coefficient a, b and c is positive. For the case when considering c = 0, then a 

solution of the form exists 𝐼ℎ
∗ = −𝑏/𝑎, when b < 0.  

𝐼ℎ1,2
∗ =

−𝑏+√(𝑏2−4𝑎𝑐)

2𝑎
,
−𝑏−√(𝑏2−4𝑎𝑐)

2𝑎
     # 

4.5 Stability of the endemic equilibrium of the Full Model 

At the endemic case 𝜀1, the following Jacobian matrix is presented, 

𝐽(𝜀1) =

[
 
 
 
 
 
 
 −𝑄1
𝑄2
0
0
0
0
0
0

   

0
−(𝜂 + 𝜇ℎ)

𝜂
0
0
−𝑄3
𝑄3
0

 

𝛾
0

−(𝛾 + 𝜇ℎ)
0
0
0
0
0

  

0
0
0
−𝑄4
𝑄5
0
0
0

   

−𝑄6
𝑄6
0
0

−(𝜇𝑝 + 𝛿𝑝)

−𝑄7
𝑄7
𝛼𝐸

  

0
0
0
0
0
−𝑄8
𝑄9
0

    

−𝑄10
𝑄10
0

−𝑄11
𝑄11
0
−𝜇𝑣
𝛼𝑣

    

−𝑄12
𝑄12
0

−𝑄13
𝑄13
0
0
−𝜇𝐸 ]

 
 
 
 
 
 
 

 

where, 

𝑄1 = 𝛽ℎ𝐼𝑣
∗ + 𝛽𝑝𝐼𝑝

∗ + 𝛼ℎ 𝐸
∗ + 𝜇ℎ  , 𝑄2 = 𝛽ℎ𝐼𝑣

∗ + 𝛽𝑝𝐼𝑝
∗ + 𝛼ℎ 𝐸

∗  , 𝑄3 = 𝛽ℎ𝑆𝑣
∗, 

𝑄4 = 𝛽𝑝𝐼𝑣
∗ + 𝛼𝑝 𝐸

∗ + 𝜇𝑝                ,  𝑄5 = 𝛽𝑝𝐼𝑣
∗ + 𝛼𝑝 𝐸

∗               , 𝑄6 = 𝛽𝑝𝑆ℎ
∗, 

        𝑄7 = 𝛽
𝑣
𝑆𝑣
∗                                           ,  𝑄8 = 𝛽

𝑣
𝐼𝑝
∗ + 𝛽

ℎ
𝐼ℎ
∗
+ 𝜇

𝑣
             , 𝑄9 = 𝛽

𝑣
𝐼𝑝
∗ + 𝛽

ℎ
𝐼ℎ
∗, 
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𝑄10 = 𝛽ℎ𝑆ℎ
∗                    , 𝑄11 = 𝛽𝑝𝑆𝑝

∗          , 𝑄12 = 𝛼ℎ𝑆ℎ
∗             , 𝑄13 = 𝛼𝑝𝑆𝑝

∗ 

The characteristics equation of 𝐽(𝜀1) is  

𝜆8 + 𝑘1𝜆
7 + 𝑘2𝜆

6 + 𝑘3𝜆
5 + 𝑘4𝜆

4 + 𝑘5𝜆
3 + 𝑘6𝜆

2 + 𝑘7𝜆 + 𝑘8 = 0 

 If and only if 𝑅0 > 1, the model's endemic equilibrium is locally asymptotically stable. 

However, because of the nature of the transmission model, it is very difficult to deal with the 

stability of the endemic equilibrium analytically. Therefore, it was an excellent opportunity to 

discuss it numerically. 

Then 𝑘1 = 18.7057914 ,         𝑘2 = 769.0026435, 

𝑘3 = 6846.3356876 ,           𝑘4 = 30939.2899134, 

𝑘5 = −2055455.276191,     𝑘6 = −342258.28868, 

𝑘7 = −201370.7669887,     𝑘8 = 24604.5523005 

It is obvious that not all 𝑘𝑖 >  0 , therefore the system is unstable in case of disease. 

5. Numerical Results 

 

We use the parameter values, which are briefly defined in Table 1, to illustrate the outcomes 

of the numerical solution of the suggested model. For all numerical results, we take into account 

the time unit in a day. Certain parameter values are assumed for this exercise for the sake of 

illustration. Matlab and Python were used to simulate the model (1) numerically. Analysis of 

how model parameters affected the disease's transmission dynamics was done. Since, most of 

the parametric values are not readily available it is needed to assume some values. However, 

some are available at [(Jin-Qiang et al.2021), (Khan et al. 2021), (Bonyah et al. 2016), 

(Nyabadza and Bonyah 2015), (Marsollier al. 2002), (Hayman and Hibble 2001) and (Bollinger 

et al. 1950)]. The initial conditions were taken at initial time of zero and the final time was 120 

considered as 𝑆ℎ,  𝐼ℎ,  𝑅ℎ,𝑆𝑝, 𝐼𝑝,𝑆𝑣,  𝐼𝑣  and E as 400, 40, 100, 100, 10, 100, 20 and 10. The 

simulation study's findings are displayed in Figures (2,3,4,5,6,7,8,9) 
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                                     Figure 2                                                                  Figure 3 
 

 
Figure 4 

 

In figures 2,3 and 4 we can illustrate Human variables in model (1) 𝑆ℎ,  𝐼ℎ and  𝑅ℎ numerically.  

 

https://aujes.journals.ekb.eg/


ASWAN SCIENCE AND TECHNOLOGY BULLETIN (ASTB )3 (1), pp.85-108, (June 2025). 

https://astb.journals.ekb.eg/  0184.-7916, Print ISSN: 1110-3009Online ISSN:  

al., 2025 et liA 

   

 

 

pg. 102 
 

 

Figure 5 

 

Figure 6 

Figure 5 and Figure 6 show Possum Variables 𝑆𝑝and 𝐼𝑝 in model (1) numerically. 
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Figure 7 

 

Figure 8 

We can illustrate vector variables 𝑆𝑣 and 𝐼𝑣  numerically in model (1) by figure 7 and figure 

8.  
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Adding Figure 9 to show environment variable E in model (1) numerically. 

Figure 9 

We will show in the following figures the effect of certain elements with certain variables. 

Population infected human( 𝑰𝒉) in our model is very sensitive to 𝜼, 𝜷𝒉 

The recovery rate of infected humans(𝜂) as shown in figure10 : increasing in 𝜂 indicates a 

decreasing in  infected humans. The contact rate between 𝑆ℎand 𝐼𝑝 (𝛽ℎ) as shown in 

figure11.As shown in figures 10&11 the curve behavior  𝐼ℎ changes on time depends on the 

value of  𝜂, 𝛽ℎ. 

 

 

Figure 10 
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Figure11 

 

Population infected possum ( 𝑰𝒑) in our model is very sensitive to 𝜹𝒑 

The death rate due to infection in possum (𝛿𝑝) as shown in figure 12. 

Figure 12 

 

Population infected possum ( 𝑰𝒑) in our model is very sensitive to 𝛽𝑣 

The contact rate between 𝐼𝑣and E (𝛽𝑣) as shown in figure13. 
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Figure 13 

6. Conclusion 

In our present work, we employ a mathematical model to thoroughly investigate the 

dynamics of Buruli ulcer. Evolutionary differential equations provide an efficient model for 

the Buruli infection. Separate investigations were conducted into the PVE model. The local 

asymptotic results for the sub-model at free disease and at endemic case were investigated for 

the case when 𝑅0 less or greater than 1.We observed that the sub-model are found locally for 

the given fixed points. Further, we investigated the fully infected model (which added the 

Human model to the earlier model) and presented its stability for the local case when    𝑅0 < 1  

also at free disease and in endemic case . The mathematical results were obtained and 

discussed. we noticed the effectiveness of certain values on Infected Items and illustrated it by 

figures.  

In future we look forward to finding a tool which can decrease the infected items in our model 

(1) and may increase the recovery items.  
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