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Abstract 

Cloud computing has revolutionized extensive parallel processing and distributed 

computation, offering computer resources through a usage-based payment model that 

significantly enhances accessibility and scalability. However, the effectiveness and speed of 

cloud services heavily depend on how tasks are scheduled and executed. Current task 

scheduling methods often struggle to balance performance metrics such as throughput, 

makespan, efficiency, and speedup, leading to suboptimal utilization of cloud resources. 

Addressing this critical gap, our study introduces a novel task-scheduling algorithm 

specifically designed for cloud computing environments. Rooted in the sine cosine algorithm, 

our approach is tailored to meet the unique demands of cloud setups, optimizing resource 

allocation and task execution. Rigorous testing across three distinct scenarios demonstrates 

that our algorithm outperforms existing methods in terms of throughput, makespan, 

efficiency, and speedup. These results highlight the practical effectiveness and efficiency of 

our algorithm, offering a significant advancement in optimizing task scheduling within cloud 

computing systems. Our work thus contributes to enhancing the performance and reliability 

of cloud services, supporting better resource management and user satisfaction. 

 

Keywords: Sine Cosine Algorithm; Cloud Computing; Heterogeneous Virtual Machines; 

Task Scheduling;  

1. Introduction 

Cloud technology represents a revolutionary paradigm aimed at delivering universal, user-

friendly, readily accessible network connectivity. It encompasses a reservoir of customizable 

computing assets that can be swiftly acquired and relinquished, demanding minimal 

administrative involvement or interaction on the part of service facilitators.  
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Cloud computing now delivers dynamic services such as memory, bandwidth, applications, 

data, and services of information technology through the internet. Various factors, including 

work schedules, determine the dependability and cloud services' performance. Scheduling 

strategies extend to resource, task, or workflow tiers interchangeably. End-users submit 

requests to the data center for computational tasks, referred to as tasks. A task refers to a 

small unit of work that must be finished within a specified timeframe. Scheduling tasks 

involves allocating tasks from cloud customers to cloud providers based on resource 

availability. Scheduling is done based on many characteristics to improve cloud performance 

holistically. A task might encompass activities like processing, data input, program retrieval, 

or operations of storage. Data centers are classified according to the agreed-upon the 

requested services and service level. Each work is subsequently allocated to an accessible 

server. The servers complete the operation that is requested and return a result, or response, to 

the user. The scheduling of cloud tasks is a Non-deterministic Polynomial (NP) complete 

issue. Users send their jobs to the cloud scheduler during the task-scheduling procedure. The 

scheduler interacts with the information system hosted on the cloud to assess the current 

availability status of resources and their characteristics before assigning tasks to diverse 

resources according to their specific needs. The scheduler will allocate multiple tasks of the 

user to several Virtual Machines (VMS). A well-planned schedule always distributes virtual 

machines most efficiently. A solid scheduling method always increases Central Processing 

Unit (CPU) usage, time to completion, and overall throughput. Scheduling tasks may be done 

in various ways based on multiple criteria. Tasks can be statically allocated to diverse 

resources during the build phase or dynamically allocated during runtime (Mathew et al., 

2014).  

To effectively address the scheduling tasks challenge, our work introduces an innovative 

solution using the efficient sine cosine algorithm, referred to as Efficient Sine Cosine (ESC). 

This novel algorithm aims at minimizing makespan while optimizing throughput, efficiency, 

and speedup. Unlike traditional scheduling methods, the ESC algorithm leverages the unique 

characteristics of the sine cosine algorithm to allocate tasks more efficiently and effectively 

in cloud computing environments. Furthermore, our study contributes to the existing 

literature by rigorously testing the ESC algorithm across diverse scenarios represented by 

directed acyclic graphs (DAGs), showcasing its superior performance compared to other 

scheduling algorithms. The practical implications of our findings are substantial, as they pave 

the way for improved resource utilization, enhanced service performance, and better user 

satisfaction in cloud computing systems. By introducing the ESC algorithm and 

demonstrating its effectiveness through rigorous testing, our work makes a significant 

contribution to advancing task scheduling techniques in cloud computing, addressing a 

critical gap in current methodologies, and providing a valuable tool for optimizing cloud 

service performance. 

The document is structured as follows: Section 2 delves into the relevant literature. Section 3 

outlines the problem. In Section 4, the algorithm based on sine and cosine principles is 

expounded. The ESC approach is detailed in Section 5. Section 6 scrutinizes the performance 

of the proposed algorithm. Lastly, Section 7 wraps up with conclusions and prospects for 

future research. 
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2. Related Work 

Cloud technology delivers computational elements like hardware and software to users via a 

network, presenting a core concept focused on dispersing extensive storage, computational 

power, and data access for scientific purposes.  Within cloud computing, tasks from users 

undergo strategic organization and execution, ensuring services are delivered effectively 

through optimal resource allocation. Job scheduling relies on diverse strategies for task 

assignment, enhancing efficiency in service provision. This work (Senthil Kumar & 

Venkatesan, 2019) presents a streamlined approach to scheduling tasks that enhances the 

methodology of scheduling tasks. Frequently, optimization methods are employed to address 

nondeterministic hard scenarios. User tasks are saved in the queue management using this 

mechanism. If the job is repeated, the priority is determined, and appropriate resources are 

allocated. New jobs are assessed and queued for execution instantaneous. The result from the 

real-time queue undergoes processing through the haybird technique that uses genetic and 

particle swarms. This method integrates genetic and particle swarm optimization algorithms 

for implementation. By employing the hybrid algorithm, appropriate resources are selected 

for user tasks within the real-time queue. 

Cloud represents the commercialization and evolution of parallel computing, grid computing, 

and distributed computing. An inherent challenge in this domain is task scheduling, a 

complex NP-hard optimization problem that has spurred the development of various meta-

heuristic techniques. A proficient scheduler of tasks must modify its scheduling approach to 

dynamic environments and diverse workloads. This research introduces a cloud scheduling 

tasks strategy utilizing the ant colony method (Tawfeek et al., 2015). The method is a 

stochastic search strategy designed for workload allocation to virtual machines. The primary 

objective of these algorithms is to minimise the completion time for a given set of jobs. 

The emerging technology of cloud computing enables pay-as-you-go models for consumers, 

delivering high-performance capabilities. Additionally, cloud computing encompasses a 

heterogeneous system housing diverse application data. Optimizing transfer and processing 

times becomes pivotal for applications handling intensive data or computations. The authors 

have crafted a scheduling task model aimed at minimizing the costs of processing. They 

introduce a method based on particle swarm optimization (PSO), drawing from their study 

(Guo et al., 2012) and emphasizing a small position value criterion. This study contrasts the 

PSO algorithm with a variant incorporating crossover and mutation techniques. 

Leveraging cloud resources for extensive programs can be cost-effective. These programs can 

be broken into task sequences, represented as a Directed Acyclic Graph (DAG). Nodes 

denote tasks, and edges show task dependencies. Cloud users are billed based on resource 

usage, but early scheduling algorithms focused only on reducing task completion time 

(makespan). To address this, we propose a cost-effective scheduling system using two 

heuristic techniques. The first dynamically assigns tasks to affordable VMs using Pareto 

dominance. The second minimizes costs for non-critical tasks, ensuring efficient cloud task 

scheduling (Su et al., 2013). 

This research (Alsubaei et al., 2024) introduces a two-machine learning approach employing 

K-means clustering to enhance performance and assist in the selection of cloud scheduling 

technologies. The first method, dubbed Efficient K-means (Ekmeans), is complemented by 

https://aujes.journals.ekb.eg/


al., 2024 et Hamed 

ASWAN SCIENCE AND TECHNOLOGY BULLETIN (ASTB )2 (1), pp. 1-16, (June 2024). 

https://astb.journals.ekb.eg/  0184.-7916, Print ISSN: 1110-Online ISSN: 3009 

  

 

 

pg. 4 
 

the second technique known as K-means HEFT (KmeanH), with HEFT denoting 

Heterogeneous Earliest End Time. 

 

3. Problem Description 

Within cloud computing frameworks, task organization is depicted through a visual schema 

involving a set of NTSK tasks, denoted as TSK1, TSK2, TSK3, and so forth. Each task is 

interconnected through GRA and E-bound edges, signifying different aspects of their 

functional demands (Hamed & Alkinani, 2021). The nodes within this representation stand 

for step-by-step operations executed within a virtual environment, with each node containing 

one or multiple data inputs. The commencement or conclusion of a task is triggered by the 

availability of input data. A hierarchical relationship denoted as TSKi → TSKj implies 

precedence where TSKi must be executed before TSKj. The duration of task execution 

denoted as TSKi, is characterized by its weight. Communication expenses between tasks, 

labeled as COM_COST(TSKi, TSKj), are non-existent if both tasks are executed on the same 

virtual platform. Time-related parameters such as task initiation and completion are denoted 

by Start_Time(TSKi, VLMj) and Finish_Time(TSKi, VLMj), respectively (Hamed & 

Alkinani, 2021). The timing of data arrival for TSKi on virtual machine VLMj is also part of 

this organizational framework. 

Data_Arrival(TSKi.VLMj)=max{Finish_Time(TSKk,VLMj)+COM_COST(TSKi,TSKk)}   (1) 

In the realm of cloud computing, the task scheduling challenge revolves around determining 

the optimal assignment or schedule for starting tasks on virtual machines. The objective is to 

reduce the overall task completion duration and execution costs while adhering to precedence 

constraints. The time taken to finish a task, also referred to as the completion time, schedule 

length, or finish time, is determined by the following calculation: 

Completion Time = max(Finish_Time(TSKi, VLMj))                                                            (2) 

Start_Time(TSKi, VLMj) = max{Ready_Time(VLMj), Data_Arrival(TSKi, VLMj)}           (3) 

Finish_Time(TSKi, VLMj) = Start_Time(TSKi, VLMj) +WEIT(TSKi, VLMj)                      (4) 

Ready_Time(VLMj) = Finish_Time(TSKi, VLMj)                                                                 (5) 

Speedup = min 
VLMj

 ( ∑
WEITi,j 

Completion Time TSKi
 )                                                                               (6) 

Efficiency = 
Speedup

NVLM
                                                                                                                (7)      

Throughput = 
NTSK

Completion Time 
                                                                                 (8) 

Algorithm 1: Completion Time Calculation (Hamed & Alkinani, 2021) 

Ready_Time[VLMj] = 0 
For each task TSKi 
{ 
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       Remove the first task, denoted as TSKi, from DLST and proceed with its execution. 
       For each VLMj 
            { 
           If TSKi is allocated on VLMj 
              Calculate the Start_Time, Finish_Time, and Ready_Time 
           End If 
             } 
} 
Calculate Completion Time 

 

4. Sine Cosine Algorithm  

The Sine-Cosine algorithm (SCA) (Abdel-Basset et al., 2021; Mirjalili, 2016) It's a 

metaheuristic method that solves optimization problems inspired by the sine and cosine 

mathematical forms. SCA begins By dispersing its solutions across the search space of the 

problem and then When computing the fitness value for each solution, Z* represents the 

solution with the best fitness and is utilized throughout the optimization process to search for 

improved solutions. Within the optimization process, the SCA will update the position of 

each solution mathematically using the following formula: 

Zl
u+1 = {

Zl
u + rand1 ∗ sin(2πrand2) ∗  |rand3Zl

∗ − Zl
u|      rand4 <

1

2

Zl
u + rand1 ∗ cos(2πrand2) ∗  |rand3Zl

∗ −  Zl
u|      rand4 ≥

1

2

                               (9) 

Where Zl
u denotes the position of the current at dimension lth, u represents the current 

iteration, and rand1, rand2, and rand3 are random integers rand1 is used in the optimization 

process To maintain a balance between exploration and exploitation, the exploitation operator 

is computed using the following formula: 

rand1 = q − q (
u

umax
)                                                                                                            (10) 

where q denotes a constant value and umax denotes the maximum of iterations that may be 

performed. The method starts with a strong exploration capability at the beginning of the 

optimization process, which steadily decreases with each iteration until it fades away after the 

optimization process. In contrast, exploration and exploitation capability grows with each 

iteration until it reaches a plateau after the optimization phase. 

 

Algorithm 2: Sine Cosine  

Create a population of solutions Zi where i = 1, 2…, N 

Evaluate Zi 

Determine the best solution Zi 

u = 1 

While (u < umax) do 

         Update rand1 

         For each Zi do 

              Update the position 
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         EndFor 

         Examine each solution's fitness value Zu+1 

         if better, change the optimal solution Z* by Zu+1  

         u=u+1 

EndWhile 

 

 

5. The Proposed Algorithm 

Given that the sine cosine algorithm operates on continuous value vectors, we'll explore five 

techniques for converting these continuous values into discrete values. The initial method 

involves the Smallest Position Value (SPV) principle, as proposed by (Dubey & Gupta, 

2017). Another approach is the Largest Position Value (LPV) function, suggested by (Wang 

et al., 2011). Furthermore, we'll utilize the round nearest, floor nearest, and ceil nearest 

functions. Referencing Table 1, we'll leverage the modulus function along with the number of 

virtual machines in the SPV and LPV strategies to adjust the result accordingly. 

Table 1 Change continuous to discrete 

Pop 2.4 3.0 1.0 1.2 1.3 1.5 2.2 

SPV rule 3 4 5 6 7 1 2 

modulus with SPV and NVLM=3 1 2 3 1 2 2 3 

LPV rule 2 1 7 6 5 4 3 

modulus with LPV and NVLM=3 3 2 2 1 3 2 1 

round nearest function 2 3 1 1 1 2 2 

floor nearest function 2 3 1 1 1 1 2 

ceil nearest function 3 3 1 2 2 2 3 

 

Algorithm 3: changes a continuous to discrete 

Functionconvert  

Rando ∈ [1:5] 

If (Rando == 1) 

               Converts by SPV  

Elseif (Rando == 2) 

               Converts by LPV 

Elseif (Rando == 3) 

               Converts by round 

Elseif (Rando == 4) 

               Converts by floor  

Else  

               Converts by ceil 

Endif  
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EndFunction 

 

Algorithm 4: ESC 

Input dag, including communication and computation costs. 

Create a pop of solutions Zi where i = 1, 2…, N 

Change the initial pop Zi by Algorithm 3 

compute the completion time after converting by Algorithm 1 

Determine the best solution (the best schedule length)  

u = 1 

while (u < umax) do 

       By using Eq. 10, update rand1  

       For each Zi do 

              By using Eq. 9, update the position 

              Change the solution obtained by Algorithm 3 

              Compute the completion time after converting by Algorithm 1 

      End for 

      Examine each solution's fitness value Zu+1 

      if better, change the optimal solution Z* by Zu+1  

     u=u+1 

End while 

6. Evaluation of the ESC 

In this study, we demonstrate the performance of the Efficient Sine Cosine (ESC) algorithm 
through its application in three distinct simulation scenarios, leveraging MATLAB as our 
simulation platform. These scenarios encompass various task and virtual machine 
configurations commonly encountered in cloud computing environments. Each scenario, 
including one with eleven tasks and three heterogeneous virtual machines, another with eleven 
tasks and three different heterogeneous virtual machines, and a third with eleven tasks 
distributed across two heterogeneous virtual machines, was initialized with specific parameters 
such as a population size of 100, maximum number of iterations of 100, and a q value of 2 for 
the ESC algorithm. We developed and implemented the ESC algorithm using custom scripts 
and functions within MATLAB's simulation environment, which facilitated the modeling and 
simulation of cloud computing environments, encompassing task scheduling, resource 
allocation, and performance evaluation. Subsequently, key performance metrics including 
throughput, makespan, efficiency, and speedup were comprehensively analyzed to assess the 
effectiveness and efficiency of the ESC algorithm in optimizing task scheduling within diverse 
cloud computing scenarios. 
 

6.1 Case Study 1 
 
We examine a scenario involving eleven tasks scheduled across three heterogeneous virtual 
machines. The cost associated with executing each task on different virtual machines is 
outlined in Table 2 (Keshanchi & Navimipour, 2016). Additionally, Table 3 details the start 
and finish times of each task on various virtual machines, along with the schedule generated by 
ESC. We compare the results achieved by ESC with those of three heterogeneous earliest finish 
time HEFT algorithms: HEFT-T, HEFT-B, and HEFT-L (Keshanchi & Navimipour, 2016), as 
well as the multiple priority queues with memetic algorithm (MPQMA) (Keshanchi & 
Navimipour, 2016). The outcomes from ESC, HEFT-T, HEFT-B, HEFT-L, and MPQMA are 
summarized in Table 4. Furthermore, Figs. 1- 4 provides graphical representations of the results 
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obtained by ESC, HEFT-T, HEFT-B, HEFT-L, and MPQMA in terms of throughput, 
efficiency, speedup, and makespan. 
 

 
Table 2 The cost of computation for the first case 

TSk/VLM VLM1 VLM2 VLM3 

TSk0 6 7 5 

TSk1 10 9 8 

TSk2 8 9 7 

TSk3 11 13 15 

TSk4 13 7 10 

TSk5 6 10 8 

TSk6 18 12 15 

TSk7 17 10 12 

TSk8 14 20 11 

TSk9 12 8 10 

TSk10 9 13 17 

 
Table 3 Allocation that obtained by ESC for the first case 

 VLM1 VLM2 VLM3 

 Start_Time Finish_Time Start_Time Finish_Time Start_Time Finish_Time 

TSk0 - - 0 7 - - 

TSk1 - - - - 25 33 

TSk2 21 29 - - - - 

TSk3 - - 7 20 - - 

TSk4 - - 20 27 - - 

TSk5 47 53 - - - - 

TSk6 29 47 - - - - 

TSk7 - - 27 37 - - 

TSk8 53 67 - - - - 

TSk9 - - 37 45 - - 

TSk10 67 76 - - - - 

 
Table 4 The comparative outcomes for the first case 

Algorithm HEFT-T HEFT-B HEFT-L MPQMA ESC 

Makespan 94 89 89 80 76 
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Fig. 1 Makespan comparison for the first case 

 

 
Fig. 2 Speedup comparison for the first case 

 

 
Fig. 3 Efficiency comparison for the first case 

 

 
Fig. 4 Throughput comparison for the first case 

 

 

6.2 Case Study 2 

 
We examine a scenario involving eleven tasks scheduled across three heterogeneous virtual 
machines. The cost associated with executing each task on different virtual machines is 
outlined in Table 5 (Hosseini Shirvani, 2018). Additionally, Table 6 details the start and finish 
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times of each task on various virtual machines, along with the schedule generated by ESC. We 
compare the results achieved by ESC with those obtained by the Genetic Algorithm (GA) 
(Hamed & Alkinani, 2021) and the Quantum Genetic Algorithm with Rotation Angle 
Refinement (QGARAR) (Gandhi et al., 2018).  The outcomes from ESC, GA, and QGARAR 
are summarized in Table 7. Furthermore, Figs. 5- 8 provides graphical representations of the 
results obtained by ESC, GA, and QGARAR in terms of throughput, efficiency, speedup, and 
makespan. 

 

Table 5 The cost of computation for the second case 

TSk/VLM VLM1 VLM2 VLM3 

TSk0 7 9 8 

TSk1 10 9 14 

TSk2 5 7 6 

TSk3 6 8 7 

TSk4 10 8 6 

TSk5 11 13 15 

TSk6 12 15 18 

TSk7 10 13 7 

TSk8 8 9 10 

TSk9 15 11 13 

TSk10 8 9 10 

 

Table 6 Allocation that obtained by ESC for the second case 

 VLM1 VLM2 VLM3 

 Start_Time Finish_Time Start_Time Finish_Time Start_Time Finish_Time 

TSk0 0 7 - - - - 

TSk1 7 17 - - - - 

TSk2 17 22 - - - - 

TSk3 - - - - 25 32 

TSk4 - - - - 32 38 

TSk5 22 33 - - - - 

TSk6 33 45 - - - - 

TSk7 - - - - 38 45 

TSk8 - - 40 49 - - 

TSk9 45 60 - - - - 

TSk10 60 68 - - - - 

 
Table 7 The comparative outcomes for the second case 

Algorithm GA QGARAR ESC 

Makespan 71 70 68 
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Fig. 5 Makespan comparison for the second case 

 

 
Fig. 6 Speedup comparison for the second case 

 

 
Fig. 7 Efficiency comparison for the second case 

 

 
Fig. 8 Throughput comparison for the second case 

 

66

67

68

69

70

71

72

GA QGARAR ESC
S

ch
ed

u
le

 L
en

g
th

1.4

1.42

1.44

1.46

1.48

1.5

1.52

GA QGARAR ESC

S
p

ee
d

u
p

0.465

0.47

0.475

0.48

0.485

0.49

0.495

0.5

0.505

GA QGARAR ESC

E
ff

ic
ie

n
cy

0.15

0.152

0.154

0.156

0.158

0.16

0.162

GA QGARAR ESC

T
h

ro
u

g
h

p
u

t

https://aujes.journals.ekb.eg/


al., 2024 et Hamed 

ASWAN SCIENCE AND TECHNOLOGY BULLETIN (ASTB )2 (1), pp. 1-16, (June 2024). 

https://astb.journals.ekb.eg/  0184.-7916, Print ISSN: 1110-Online ISSN: 3009 

  

 

 

pg. 12 
 

6.3 Case Study 3 

 
We examine a scenario involving eleven tasks scheduled across two heterogeneous virtual 
machines. The cost associated with executing each task on different virtual machines is 
outlined in Table 8 (Hosseini Shirvani, 2020). Additionally, Table 9 details the start and finish 
times of each task on various virtual machines, along with the schedule generated by ESC. We 
compare the results achieved by ESC with those obtained by GA (Xu et al., 2014) and particle 
Swarm Optimization (PSO) (Al Badawi & Shatnawi, 2013). The outcomes from ESC, GA, and 
PSO are summarized in Table 10. Furthermore, Figs. 9- 12 provides graphical representations 
of the results obtained by ESC, GA, and PSO in terms of throughput, efficiency, speedup, and 
makespan. 
 

 

Table 8 The cost of computation for the third case 

TSk/VLM VLM1 VLM2 

TSk1 7 9 

TSk2 10 9 

TSk3 5 7 

TSk4 6 8 

TSk5 10 8 

TSk6 11 13 

TSk7 12 15 

TSk8 10 13 

TSk9 8 9 

TSk10 15 11 

TSk11 8 9 

 

Table 9 Allocation that obtained by ESC for the third case 

 VLM1 VLM2 

 Start_Time Finish_Time Start_Time Finish_Time 

TSk1 0 7 - - 

TSk2 7 17 - - 

TSk3 - - 21 28 

TSk4 17 23 - - 

TSk5 23 33 - - 

TSk6 33 44 - - 

TSk7 - - 28 43 

TSk8 - - 43 56 

TSk9 44 52 - - 

TSk10 - - 56 67 

TSk11 - - 67 76 

 

Table 10 The comparative outcomes for the third case 

Algorithm GA PSO ESC 

Makespan 78 77 76 

 

https://aujes.journals.ekb.eg/


al., 2024 et Hamed 

ASWAN SCIENCE AND TECHNOLOGY BULLETIN (ASTB )2 (1), pp. 1-16, (June 2024). 

https://astb.journals.ekb.eg/  0184.-7916, Print ISSN: 1110-Online ISSN: 3009 

  

 

 

pg. 13 
 

 
Fig. 9 Makespan comparison for the third case 

 
Fig. 10 Speedup comparison for the third case 

 

 
Fig. 11 Efficiency comparison for the third case 

 
Fig. 12 Throughput comparison for the third case 
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7. Conclusion and Future Work 

In this study, we presented an efficient sine cosine algorithm specifically designed for task 
scheduling in cloud computing environments. Our algorithm effectively allocates tasks to 
available virtual machines (VMs), optimizing key performance metrics. Through extensive 
testing using directed acyclic graphs (DAGs) representing various scenarios, our algorithm 
consistently outperformed existing methods in terms of throughput, makespan, efficiency, and 
speedup. These results highlight the algorithm's potential to enhance the performance and 
efficiency of cloud services. However, it is important to note the main limitation of our 
proposed method. The efficiency and accuracy of our algorithm are highly dependent on having 
precise and up-to-date information regarding resource availability and characteristics within the 
cloud environment. Inaccurate or outdated data can lead to suboptimal task allocations and 
performance degradation. Addressing this limitation will be a focus of our future work. 
Looking ahead, future work will focus on developing an advanced algorithm that further 
incorporates resource load balancing based on DAGs. This enhancement aims to improve 
resource utilization and service reliability, addressing the dynamic and heterogeneous nature of 
cloud environments. By continuing to refine and expand upon our current approach, we aim to 
contribute to the ongoing advancement of task-scheduling techniques in cloud computing. 
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