
al., 2024 et Hamed

pg. 1

Vol. 2, No. 1, pp. 1-16, (June 2024)

ASWAN SCIENCE AND TECHNOLOGY BULLETIN (ASTB)
Online ISSN: 3009-7916, Print ISSN: 1110-0184

Journal homepage: https://astb.journals.ekb.eg/ E-mail: essamshaalan@sci.aswu.edu.eg

Original Article

Optimization of Task Scheduling in Cloud Computing Using the

Sine Cosine Algorithm

Ahmed Y. Hameda*, Moatamad R. Hassanb, and M. Kh. Elnaharya

aFaculty of Computers and Artificial Intelligence, Department of Computer Science, Sohag University, Sohag, 82524, Egypt.

bDepartment of Computer Science and Mathematics, Faculty of Science, Aswan University, Aswan, Egypt

Received: 16/05/2024 Accepted: 05/06/2024

Abstract

Cloud computing has revolutionized extensive parallel processing and distributed

computation, offering computer resources through a usage-based payment model that

significantly enhances accessibility and scalability. However, the effectiveness and speed of

cloud services heavily depend on how tasks are scheduled and executed. Current task

scheduling methods often struggle to balance performance metrics such as throughput,

makespan, efficiency, and speedup, leading to suboptimal utilization of cloud resources.

Addressing this critical gap, our study introduces a novel task-scheduling algorithm

specifically designed for cloud computing environments. Rooted in the sine cosine algorithm,

our approach is tailored to meet the unique demands of cloud setups, optimizing resource

allocation and task execution. Rigorous testing across three distinct scenarios demonstrates

that our algorithm outperforms existing methods in terms of throughput, makespan,

efficiency, and speedup. These results highlight the practical effectiveness and efficiency of

our algorithm, offering a significant advancement in optimizing task scheduling within cloud

computing systems. Our work thus contributes to enhancing the performance and reliability

of cloud services, supporting better resource management and user satisfaction.

Keywords: Sine Cosine Algorithm; Cloud Computing; Heterogeneous Virtual Machines;

Task Scheduling;

1. Introduction

Cloud technology represents a revolutionary paradigm aimed at delivering universal, user-

friendly, readily accessible network connectivity. It encompasses a reservoir of customizable

computing assets that can be swiftly acquired and relinquished, demanding minimal

administrative involvement or interaction on the part of service facilitators.

Corresponding author*: E-mail address: ayhamedd@gamil.com

https://astb.journals.ekb.eg/
mailto:ayhamedd@gamil.com

al., 2024 et Hamed

ASWAN SCIENCE AND TECHNOLOGY BULLETIN (ASTB)2 (1), pp. 1-16, (June 2024).

https://astb.journals.ekb.eg/ 0184.-7916, Print ISSN: 1110-Online ISSN: 3009

pg. 2

Cloud computing now delivers dynamic services such as memory, bandwidth, applications,

data, and services of information technology through the internet. Various factors, including

work schedules, determine the dependability and cloud services' performance. Scheduling

strategies extend to resource, task, or workflow tiers interchangeably. End-users submit

requests to the data center for computational tasks, referred to as tasks. A task refers to a

small unit of work that must be finished within a specified timeframe. Scheduling tasks

involves allocating tasks from cloud customers to cloud providers based on resource

availability. Scheduling is done based on many characteristics to improve cloud performance

holistically. A task might encompass activities like processing, data input, program retrieval,

or operations of storage. Data centers are classified according to the agreed-upon the

requested services and service level. Each work is subsequently allocated to an accessible

server. The servers complete the operation that is requested and return a result, or response, to

the user. The scheduling of cloud tasks is a Non-deterministic Polynomial (NP) complete

issue. Users send their jobs to the cloud scheduler during the task-scheduling procedure. The

scheduler interacts with the information system hosted on the cloud to assess the current

availability status of resources and their characteristics before assigning tasks to diverse

resources according to their specific needs. The scheduler will allocate multiple tasks of the

user to several Virtual Machines (VMS). A well-planned schedule always distributes virtual

machines most efficiently. A solid scheduling method always increases Central Processing

Unit (CPU) usage, time to completion, and overall throughput. Scheduling tasks may be done

in various ways based on multiple criteria. Tasks can be statically allocated to diverse

resources during the build phase or dynamically allocated during runtime (Mathew et al.,

2014).

To effectively address the scheduling tasks challenge, our work introduces an innovative

solution using the efficient sine cosine algorithm, referred to as Efficient Sine Cosine (ESC).

This novel algorithm aims at minimizing makespan while optimizing throughput, efficiency,

and speedup. Unlike traditional scheduling methods, the ESC algorithm leverages the unique

characteristics of the sine cosine algorithm to allocate tasks more efficiently and effectively

in cloud computing environments. Furthermore, our study contributes to the existing

literature by rigorously testing the ESC algorithm across diverse scenarios represented by

directed acyclic graphs (DAGs), showcasing its superior performance compared to other

scheduling algorithms. The practical implications of our findings are substantial, as they pave

the way for improved resource utilization, enhanced service performance, and better user

satisfaction in cloud computing systems. By introducing the ESC algorithm and

demonstrating its effectiveness through rigorous testing, our work makes a significant

contribution to advancing task scheduling techniques in cloud computing, addressing a

critical gap in current methodologies, and providing a valuable tool for optimizing cloud

service performance.

The document is structured as follows: Section 2 delves into the relevant literature. Section 3

outlines the problem. In Section 4, the algorithm based on sine and cosine principles is

expounded. The ESC approach is detailed in Section 5. Section 6 scrutinizes the performance

of the proposed algorithm. Lastly, Section 7 wraps up with conclusions and prospects for

future research.

https://aujes.journals.ekb.eg/

al., 2024 et Hamed

ASWAN SCIENCE AND TECHNOLOGY BULLETIN (ASTB)2 (1), pp. 1-16, (June 2024).

https://astb.journals.ekb.eg/ 0184.-7916, Print ISSN: 1110-Online ISSN: 3009

pg. 3

2. Related Work

Cloud technology delivers computational elements like hardware and software to users via a

network, presenting a core concept focused on dispersing extensive storage, computational

power, and data access for scientific purposes. Within cloud computing, tasks from users

undergo strategic organization and execution, ensuring services are delivered effectively

through optimal resource allocation. Job scheduling relies on diverse strategies for task

assignment, enhancing efficiency in service provision. This work (Senthil Kumar &

Venkatesan, 2019) presents a streamlined approach to scheduling tasks that enhances the

methodology of scheduling tasks. Frequently, optimization methods are employed to address

nondeterministic hard scenarios. User tasks are saved in the queue management using this

mechanism. If the job is repeated, the priority is determined, and appropriate resources are

allocated. New jobs are assessed and queued for execution instantaneous. The result from the

real-time queue undergoes processing through the haybird technique that uses genetic and

particle swarms. This method integrates genetic and particle swarm optimization algorithms

for implementation. By employing the hybrid algorithm, appropriate resources are selected

for user tasks within the real-time queue.

Cloud represents the commercialization and evolution of parallel computing, grid computing,

and distributed computing. An inherent challenge in this domain is task scheduling, a

complex NP-hard optimization problem that has spurred the development of various meta-

heuristic techniques. A proficient scheduler of tasks must modify its scheduling approach to

dynamic environments and diverse workloads. This research introduces a cloud scheduling

tasks strategy utilizing the ant colony method (Tawfeek et al., 2015). The method is a

stochastic search strategy designed for workload allocation to virtual machines. The primary

objective of these algorithms is to minimise the completion time for a given set of jobs.

The emerging technology of cloud computing enables pay-as-you-go models for consumers,

delivering high-performance capabilities. Additionally, cloud computing encompasses a

heterogeneous system housing diverse application data. Optimizing transfer and processing

times becomes pivotal for applications handling intensive data or computations. The authors

have crafted a scheduling task model aimed at minimizing the costs of processing. They

introduce a method based on particle swarm optimization (PSO), drawing from their study

(Guo et al., 2012) and emphasizing a small position value criterion. This study contrasts the

PSO algorithm with a variant incorporating crossover and mutation techniques.

Leveraging cloud resources for extensive programs can be cost-effective. These programs can

be broken into task sequences, represented as a Directed Acyclic Graph (DAG). Nodes

denote tasks, and edges show task dependencies. Cloud users are billed based on resource

usage, but early scheduling algorithms focused only on reducing task completion time

(makespan). To address this, we propose a cost-effective scheduling system using two

heuristic techniques. The first dynamically assigns tasks to affordable VMs using Pareto

dominance. The second minimizes costs for non-critical tasks, ensuring efficient cloud task

scheduling (Su et al., 2013).

This research (Alsubaei et al., 2024) introduces a two-machine learning approach employing

K-means clustering to enhance performance and assist in the selection of cloud scheduling

technologies. The first method, dubbed Efficient K-means (Ekmeans), is complemented by

https://aujes.journals.ekb.eg/

al., 2024 et Hamed

ASWAN SCIENCE AND TECHNOLOGY BULLETIN (ASTB)2 (1), pp. 1-16, (June 2024).

https://astb.journals.ekb.eg/ 0184.-7916, Print ISSN: 1110-Online ISSN: 3009

pg. 4

the second technique known as K-means HEFT (KmeanH), with HEFT denoting

Heterogeneous Earliest End Time.

3. Problem Description

Within cloud computing frameworks, task organization is depicted through a visual schema

involving a set of NTSK tasks, denoted as TSK1, TSK2, TSK3, and so forth. Each task is

interconnected through GRA and E-bound edges, signifying different aspects of their

functional demands (Hamed & Alkinani, 2021). The nodes within this representation stand

for step-by-step operations executed within a virtual environment, with each node containing

one or multiple data inputs. The commencement or conclusion of a task is triggered by the

availability of input data. A hierarchical relationship denoted as TSKi → TSKj implies

precedence where TSKi must be executed before TSKj. The duration of task execution

denoted as TSKi, is characterized by its weight. Communication expenses between tasks,

labeled as COM_COST(TSKi, TSKj), are non-existent if both tasks are executed on the same

virtual platform. Time-related parameters such as task initiation and completion are denoted

by Start_Time(TSKi, VLMj) and Finish_Time(TSKi, VLMj), respectively (Hamed &

Alkinani, 2021). The timing of data arrival for TSKi on virtual machine VLMj is also part of

this organizational framework.

Data_Arrival(TSKi.VLMj)=max{Finish_Time(TSKk,VLMj)+COM_COST(TSKi,TSKk)} (1)

In the realm of cloud computing, the task scheduling challenge revolves around determining

the optimal assignment or schedule for starting tasks on virtual machines. The objective is to

reduce the overall task completion duration and execution costs while adhering to precedence

constraints. The time taken to finish a task, also referred to as the completion time, schedule

length, or finish time, is determined by the following calculation:

Completion Time = max(Finish_Time(TSKi, VLMj)) (2)

Start_Time(TSKi, VLMj) = max{Ready_Time(VLMj), Data_Arrival(TSKi, VLMj)} (3)

Finish_Time(TSKi, VLMj) = Start_Time(TSKi, VLMj) +WEIT(TSKi, VLMj) (4)

Ready_Time(VLMj) = Finish_Time(TSKi, VLMj) (5)

Speedup = min
VLMj

 (∑
WEITi,j

Completion Time TSKi
) (6)

Efficiency =
Speedup

NVLM
 (7)

Throughput =
NTSK

Completion Time
 (8)

Algorithm 1: Completion Time Calculation (Hamed & Alkinani, 2021)

Ready_Time[VLMj] = 0
For each task TSKi
{

https://aujes.journals.ekb.eg/

al., 2024 et Hamed

ASWAN SCIENCE AND TECHNOLOGY BULLETIN (ASTB)2 (1), pp. 1-16, (June 2024).

https://astb.journals.ekb.eg/ 0184.-7916, Print ISSN: 1110-Online ISSN: 3009

pg. 5

 Remove the first task, denoted as TSKi, from DLST and proceed with its execution.
 For each VLMj
 {
 If TSKi is allocated on VLMj
 Calculate the Start_Time, Finish_Time, and Ready_Time
 End If
 }
}
Calculate Completion Time

4. Sine Cosine Algorithm

The Sine-Cosine algorithm (SCA) (Abdel-Basset et al., 2021; Mirjalili, 2016) It's a

metaheuristic method that solves optimization problems inspired by the sine and cosine

mathematical forms. SCA begins By dispersing its solutions across the search space of the

problem and then When computing the fitness value for each solution, Z* represents the

solution with the best fitness and is utilized throughout the optimization process to search for

improved solutions. Within the optimization process, the SCA will update the position of

each solution mathematically using the following formula:

Zl
u+1 = {

Zl
u + rand1 ∗ sin(2πrand2) ∗ |rand3Zl

∗ − Zl
u| rand4 <

1

2

Zl
u + rand1 ∗ cos(2πrand2) ∗ |rand3Zl

∗ − Zl
u| rand4 ≥

1

2

 (9)

Where Zl
u denotes the position of the current at dimension lth, u represents the current

iteration, and rand1, rand2, and rand3 are random integers rand1 is used in the optimization

process To maintain a balance between exploration and exploitation, the exploitation operator

is computed using the following formula:

rand1 = q − q (
u

umax
) (10)

where q denotes a constant value and umax denotes the maximum of iterations that may be

performed. The method starts with a strong exploration capability at the beginning of the

optimization process, which steadily decreases with each iteration until it fades away after the

optimization process. In contrast, exploration and exploitation capability grows with each

iteration until it reaches a plateau after the optimization phase.

Algorithm 2: Sine Cosine

Create a population of solutions Zi where i = 1, 2…, N

Evaluate Zi

Determine the best solution Zi

u = 1

While (u < umax) do

 Update rand1

 For each Zi do

 Update the position

https://aujes.journals.ekb.eg/

al., 2024 et Hamed

ASWAN SCIENCE AND TECHNOLOGY BULLETIN (ASTB)2 (1), pp. 1-16, (June 2024).

https://astb.journals.ekb.eg/ 0184.-7916, Print ISSN: 1110-Online ISSN: 3009

pg. 6

 EndFor

 Examine each solution's fitness value Zu+1

 if better, change the optimal solution Z* by Zu+1

 u=u+1

EndWhile

5. The Proposed Algorithm

Given that the sine cosine algorithm operates on continuous value vectors, we'll explore five

techniques for converting these continuous values into discrete values. The initial method

involves the Smallest Position Value (SPV) principle, as proposed by (Dubey & Gupta,

2017). Another approach is the Largest Position Value (LPV) function, suggested by (Wang

et al., 2011). Furthermore, we'll utilize the round nearest, floor nearest, and ceil nearest

functions. Referencing Table 1, we'll leverage the modulus function along with the number of

virtual machines in the SPV and LPV strategies to adjust the result accordingly.

Table 1 Change continuous to discrete

Pop 2.4 3.0 1.0 1.2 1.3 1.5 2.2

SPV rule 3 4 5 6 7 1 2

modulus with SPV and NVLM=3 1 2 3 1 2 2 3

LPV rule 2 1 7 6 5 4 3

modulus with LPV and NVLM=3 3 2 2 1 3 2 1

round nearest function 2 3 1 1 1 2 2

floor nearest function 2 3 1 1 1 1 2

ceil nearest function 3 3 1 2 2 2 3

Algorithm 3: changes a continuous to discrete

Functionconvert

Rando ∈ [1:5]

If (Rando == 1)

 Converts by SPV

Elseif (Rando == 2)

 Converts by LPV

Elseif (Rando == 3)

 Converts by round

Elseif (Rando == 4)

 Converts by floor

Else

 Converts by ceil

Endif

https://aujes.journals.ekb.eg/

al., 2024 et Hamed

ASWAN SCIENCE AND TECHNOLOGY BULLETIN (ASTB)2 (1), pp. 1-16, (June 2024).

https://astb.journals.ekb.eg/ 0184.-7916, Print ISSN: 1110-Online ISSN: 3009

pg. 7

EndFunction

Algorithm 4: ESC

Input dag, including communication and computation costs.

Create a pop of solutions Zi where i = 1, 2…, N

Change the initial pop Zi by Algorithm 3

compute the completion time after converting by Algorithm 1

Determine the best solution (the best schedule length)

u = 1

while (u < umax) do

 By using Eq. 10, update rand1

 For each Zi do

 By using Eq. 9, update the position

 Change the solution obtained by Algorithm 3

 Compute the completion time after converting by Algorithm 1

 End for

 Examine each solution's fitness value Zu+1

 if better, change the optimal solution Z* by Zu+1

 u=u+1

End while

6. Evaluation of the ESC

In this study, we demonstrate the performance of the Efficient Sine Cosine (ESC) algorithm
through its application in three distinct simulation scenarios, leveraging MATLAB as our
simulation platform. These scenarios encompass various task and virtual machine
configurations commonly encountered in cloud computing environments. Each scenario,
including one with eleven tasks and three heterogeneous virtual machines, another with eleven
tasks and three different heterogeneous virtual machines, and a third with eleven tasks
distributed across two heterogeneous virtual machines, was initialized with specific parameters
such as a population size of 100, maximum number of iterations of 100, and a q value of 2 for
the ESC algorithm. We developed and implemented the ESC algorithm using custom scripts
and functions within MATLAB's simulation environment, which facilitated the modeling and
simulation of cloud computing environments, encompassing task scheduling, resource
allocation, and performance evaluation. Subsequently, key performance metrics including
throughput, makespan, efficiency, and speedup were comprehensively analyzed to assess the
effectiveness and efficiency of the ESC algorithm in optimizing task scheduling within diverse
cloud computing scenarios.

6.1 Case Study 1

We examine a scenario involving eleven tasks scheduled across three heterogeneous virtual
machines. The cost associated with executing each task on different virtual machines is
outlined in Table 2 (Keshanchi & Navimipour, 2016). Additionally, Table 3 details the start
and finish times of each task on various virtual machines, along with the schedule generated by
ESC. We compare the results achieved by ESC with those of three heterogeneous earliest finish
time HEFT algorithms: HEFT-T, HEFT-B, and HEFT-L (Keshanchi & Navimipour, 2016), as
well as the multiple priority queues with memetic algorithm (MPQMA) (Keshanchi &
Navimipour, 2016). The outcomes from ESC, HEFT-T, HEFT-B, HEFT-L, and MPQMA are
summarized in Table 4. Furthermore, Figs. 1- 4 provides graphical representations of the results

https://aujes.journals.ekb.eg/

al., 2024 et Hamed

ASWAN SCIENCE AND TECHNOLOGY BULLETIN (ASTB)2 (1), pp. 1-16, (June 2024).

https://astb.journals.ekb.eg/ 0184.-7916, Print ISSN: 1110-Online ISSN: 3009

pg. 8

obtained by ESC, HEFT-T, HEFT-B, HEFT-L, and MPQMA in terms of throughput,
efficiency, speedup, and makespan.

Table 2 The cost of computation for the first case

TSk/VLM VLM1 VLM2 VLM3

TSk0 6 7 5

TSk1 10 9 8

TSk2 8 9 7

TSk3 11 13 15

TSk4 13 7 10

TSk5 6 10 8

TSk6 18 12 15

TSk7 17 10 12

TSk8 14 20 11

TSk9 12 8 10

TSk10 9 13 17

Table 3 Allocation that obtained by ESC for the first case

 VLM1 VLM2 VLM3

 Start_Time Finish_Time Start_Time Finish_Time Start_Time Finish_Time

TSk0 - - 0 7 - -

TSk1 - - - - 25 33

TSk2 21 29 - - - -

TSk3 - - 7 20 - -

TSk4 - - 20 27 - -

TSk5 47 53 - - - -

TSk6 29 47 - - - -

TSk7 - - 27 37 - -

TSk8 53 67 - - - -

TSk9 - - 37 45 - -

TSk10 67 76 - - - -

Table 4 The comparative outcomes for the first case

Algorithm HEFT-T HEFT-B HEFT-L MPQMA ESC

Makespan 94 89 89 80 76

https://aujes.journals.ekb.eg/

al., 2024 et Hamed

ASWAN SCIENCE AND TECHNOLOGY BULLETIN (ASTB)2 (1), pp. 1-16, (June 2024).

https://astb.journals.ekb.eg/ 0184.-7916, Print ISSN: 1110-Online ISSN: 3009

pg. 9

Fig. 1 Makespan comparison for the first case

Fig. 2 Speedup comparison for the first case

Fig. 3 Efficiency comparison for the first case

Fig. 4 Throughput comparison for the first case

6.2 Case Study 2

We examine a scenario involving eleven tasks scheduled across three heterogeneous virtual
machines. The cost associated with executing each task on different virtual machines is
outlined in Table 5 (Hosseini Shirvani, 2018). Additionally, Table 6 details the start and finish

0

20

40

60

80

100

HEFT-T HEFT-B HEFT-L MPQMA ESC

S
ch

ed
u

le
 L

en
g

th

0

0.5

1

1.5

2

HEFT-T HEFT-B HEFT-L MPQMA ESC

S
p

ee
d

u
p

0

0.1

0.2

0.3

0.4

0.5

0.6

HEFT-T HEFT-B HEFT-L MPQMA ESC

E
ff

ic
ie

n
cy

0

0.05

0.1

0.15

0.2

HEFT-T HEFT-B HEFT-L MPQMA ESC

T
h

ro
u

g
h

p
u

t

https://aujes.journals.ekb.eg/

al., 2024 et Hamed

ASWAN SCIENCE AND TECHNOLOGY BULLETIN (ASTB)2 (1), pp. 1-16, (June 2024).

https://astb.journals.ekb.eg/ 0184.-7916, Print ISSN: 1110-Online ISSN: 3009

pg. 10

times of each task on various virtual machines, along with the schedule generated by ESC. We
compare the results achieved by ESC with those obtained by the Genetic Algorithm (GA)
(Hamed & Alkinani, 2021) and the Quantum Genetic Algorithm with Rotation Angle
Refinement (QGARAR) (Gandhi et al., 2018). The outcomes from ESC, GA, and QGARAR
are summarized in Table 7. Furthermore, Figs. 5- 8 provides graphical representations of the
results obtained by ESC, GA, and QGARAR in terms of throughput, efficiency, speedup, and
makespan.

Table 5 The cost of computation for the second case

TSk/VLM VLM1 VLM2 VLM3

TSk0 7 9 8

TSk1 10 9 14

TSk2 5 7 6

TSk3 6 8 7

TSk4 10 8 6

TSk5 11 13 15

TSk6 12 15 18

TSk7 10 13 7

TSk8 8 9 10

TSk9 15 11 13

TSk10 8 9 10

Table 6 Allocation that obtained by ESC for the second case

 VLM1 VLM2 VLM3

 Start_Time Finish_Time Start_Time Finish_Time Start_Time Finish_Time

TSk0 0 7 - - - -

TSk1 7 17 - - - -

TSk2 17 22 - - - -

TSk3 - - - - 25 32

TSk4 - - - - 32 38

TSk5 22 33 - - - -

TSk6 33 45 - - - -

TSk7 - - - - 38 45

TSk8 - - 40 49 - -

TSk9 45 60 - - - -

TSk10 60 68 - - - -

Table 7 The comparative outcomes for the second case

Algorithm GA QGARAR ESC

Makespan 71 70 68

https://aujes.journals.ekb.eg/

al., 2024 et Hamed

ASWAN SCIENCE AND TECHNOLOGY BULLETIN (ASTB)2 (1), pp. 1-16, (June 2024).

https://astb.journals.ekb.eg/ 0184.-7916, Print ISSN: 1110-Online ISSN: 3009

pg. 11

Fig. 5 Makespan comparison for the second case

Fig. 6 Speedup comparison for the second case

Fig. 7 Efficiency comparison for the second case

Fig. 8 Throughput comparison for the second case

66

67

68

69

70

71

72

GA QGARAR ESC
S

ch
ed

u
le

 L
en

g
th

1.4

1.42

1.44

1.46

1.48

1.5

1.52

GA QGARAR ESC

S
p

ee
d

u
p

0.465

0.47

0.475

0.48

0.485

0.49

0.495

0.5

0.505

GA QGARAR ESC

E
ff

ic
ie

n
cy

0.15

0.152

0.154

0.156

0.158

0.16

0.162

GA QGARAR ESC

T
h

ro
u

g
h

p
u

t

https://aujes.journals.ekb.eg/

al., 2024 et Hamed

ASWAN SCIENCE AND TECHNOLOGY BULLETIN (ASTB)2 (1), pp. 1-16, (June 2024).

https://astb.journals.ekb.eg/ 0184.-7916, Print ISSN: 1110-Online ISSN: 3009

pg. 12

6.3 Case Study 3

We examine a scenario involving eleven tasks scheduled across two heterogeneous virtual
machines. The cost associated with executing each task on different virtual machines is
outlined in Table 8 (Hosseini Shirvani, 2020). Additionally, Table 9 details the start and finish
times of each task on various virtual machines, along with the schedule generated by ESC. We
compare the results achieved by ESC with those obtained by GA (Xu et al., 2014) and particle
Swarm Optimization (PSO) (Al Badawi & Shatnawi, 2013). The outcomes from ESC, GA, and
PSO are summarized in Table 10. Furthermore, Figs. 9- 12 provides graphical representations
of the results obtained by ESC, GA, and PSO in terms of throughput, efficiency, speedup, and
makespan.

Table 8 The cost of computation for the third case

TSk/VLM VLM1 VLM2

TSk1 7 9

TSk2 10 9

TSk3 5 7

TSk4 6 8

TSk5 10 8

TSk6 11 13

TSk7 12 15

TSk8 10 13

TSk9 8 9

TSk10 15 11

TSk11 8 9

Table 9 Allocation that obtained by ESC for the third case

 VLM1 VLM2

 Start_Time Finish_Time Start_Time Finish_Time

TSk1 0 7 - -

TSk2 7 17 - -

TSk3 - - 21 28

TSk4 17 23 - -

TSk5 23 33 - -

TSk6 33 44 - -

TSk7 - - 28 43

TSk8 - - 43 56

TSk9 44 52 - -

TSk10 - - 56 67

TSk11 - - 67 76

Table 10 The comparative outcomes for the third case

Algorithm GA PSO ESC

Makespan 78 77 76

https://aujes.journals.ekb.eg/

al., 2024 et Hamed

ASWAN SCIENCE AND TECHNOLOGY BULLETIN (ASTB)2 (1), pp. 1-16, (June 2024).

https://astb.journals.ekb.eg/ 0184.-7916, Print ISSN: 1110-Online ISSN: 3009

pg. 13

Fig. 9 Makespan comparison for the third case

Fig. 10 Speedup comparison for the third case

Fig. 11 Efficiency comparison for the third case

Fig. 12 Throughput comparison for the third case

75

75.5

76

76.5

77

77.5

78

78.5

GA PSO ESC
S

ch
ed

u
le

 L
en

g
th

1.28

1.29

1.3

1.31

1.32

1.33

1.34

1.35

GA PSO ESC

S
p

ee
d

u
p

0.64

0.645

0.65

0.655

0.66

0.665

0.67

0.675

GA PSO ESC

E
ff

ic
ie

n
cy

0.139

0.14

0.141

0.142

0.143

0.144

0.145

GA PSO ESC

T
h

ro
u

g
h

p
u

t

https://aujes.journals.ekb.eg/

al., 2024 et Hamed

ASWAN SCIENCE AND TECHNOLOGY BULLETIN (ASTB)2 (1), pp. 1-16, (June 2024).

https://astb.journals.ekb.eg/ 0184.-7916, Print ISSN: 1110-Online ISSN: 3009

pg. 14

7. Conclusion and Future Work

In this study, we presented an efficient sine cosine algorithm specifically designed for task
scheduling in cloud computing environments. Our algorithm effectively allocates tasks to
available virtual machines (VMs), optimizing key performance metrics. Through extensive
testing using directed acyclic graphs (DAGs) representing various scenarios, our algorithm
consistently outperformed existing methods in terms of throughput, makespan, efficiency, and
speedup. These results highlight the algorithm's potential to enhance the performance and
efficiency of cloud services. However, it is important to note the main limitation of our
proposed method. The efficiency and accuracy of our algorithm are highly dependent on having
precise and up-to-date information regarding resource availability and characteristics within the
cloud environment. Inaccurate or outdated data can lead to suboptimal task allocations and
performance degradation. Addressing this limitation will be a focus of our future work.
Looking ahead, future work will focus on developing an advanced algorithm that further
incorporates resource load balancing based on DAGs. This enhancement aims to improve
resource utilization and service reliability, addressing the dynamic and heterogeneous nature of
cloud environments. By continuing to refine and expand upon our current approach, we aim to
contribute to the ongoing advancement of task-scheduling techniques in cloud computing.

https://aujes.journals.ekb.eg/

al., 2024 et Hamed

ASWAN SCIENCE AND TECHNOLOGY BULLETIN (ASTB)2 (1), pp. 1-16, (June 2024).

https://astb.journals.ekb.eg/ 0184.-7916, Print ISSN: 1110-Online ISSN: 3009

pg. 15

References

Abdel-Basset, M., Mohamed, R., Abouhawwash, M., Chakrabortty, R. K., & Ryan, M. J.

(2021). EA-MSCA: An effective energy-aware multi-objective modified sine-cosine

algorithm for real-time task scheduling in multiprocessor systems: Methods and

analysis. Expert Systems with Applications, 173(February), 114699.

https://doi.org/10.1016/j.eswa.2021.114699

Al Badawi, A., & Shatnawi, A. (2013). Static scheduling of directed acyclic data flow graphs

onto multiprocessors using particle swarm optimization. Computers and Operations

Research, 40(10), 2322–2328. https://doi.org/10.1016/j.cor.2013.03.015

Alsubaei, F. S., Hamed, A. Y., Hassan, M. R., Mohery, M., & Elnahary, M. K. (2024).

Machine learning approach to optimal task scheduling in cloud communication.

Alexandria Engineering Journal, 89(January), 1–30.

https://doi.org/10.1016/j.aej.2024.01.040

Dubey, I., & Gupta, M. (2017). Uniform mutation and SPV rule based optimized PSO

algorithm for TSP problem. Proceedings of 2017 4th International Conference on

Electronics and Communication Systems, ICECS 2017, 17, 168–172.

https://doi.org/10.1109/ECS.2017.8067862

Gandhi, T., Nitin, & Alam, T. (2018). Quantum genetic algorithm with rotation angle

refinement for dependent task scheduling on distributed systems. 2017 10th

International Conference on Contemporary Computing, IC3 2017, 2018-Janua(August),

1–5. https://doi.org/10.1109/IC3.2017.8284295

Guo, L., Zhao, S., Shen, S., & Jiang, C. (2012). Task scheduling optimization in cloud

computing based on heuristic Algorithm. Journal of Networks, 7(3), 547–553.

https://doi.org/10.4304/jnw.7.3.547-553

Hamed, A. Y., & Alkinani, M. H. (2021). Task scheduling optimization in cloud computing

based on genetic algorithms. Computers, Materials and Continua, 69(3), 3289–3301.

https://doi.org/10.32604/cmc.2021.018658

Hosseini Shirvani, M. (2018). A new Shuffled Genetic-based Task Scheduling Algorithm in

Heterogeneous Distributed Systems. Heterogeneous Distributed Systems. J. Adv.

Comput. Res, 9(4), 19–36. http://jacr.iausari.ac.ir/article_660143.html

Hosseini Shirvani, M. (2020). A hybrid meta-heuristic algorithm for scientific workflow

scheduling in heterogeneous distributed computing systems. Engineering Applications

of Artificial Intelligence, 90(September 2019), 103501.

https://doi.org/10.1016/j.engappai.2020.103501

Keshanchi, B., & Navimipour, N. J. (2016). Priority-based task scheduling in the cloud

systems using a memetic algorithm. Journal of Circuits, Systems and Computers,

25(10), 1–33. https://doi.org/10.1142/S021812661650119X

Mathew, T., Sekaran, K. C., & Jose, J. (2014). Study and analysis of various task scheduling

algorithms in the cloud computing environment. Proceedings of the 2014 International

Conference on Advances in Computing, Communications and Informatics, ICACCI

2014, 658–664. https://doi.org/10.1109/ICACCI.2014.6968517

Mirjalili, S. (2016). SCA: A Sine Cosine Algorithm for solving optimization problems.

Knowledge-Based Systems, 96, 120–133. https://doi.org/10.1016/j.knosys.2015.12.022

Senthil Kumar, A. M., & Venkatesan, M. (2019). Task scheduling in a cloud computing

environment using HGPSO algorithm. Cluster Computing, 22(s1), 2179–2185.

https://doi.org/10.1007/s10586-018-2515-2

Su, S., Li, J., Huang, Q., Huang, X., Shuang, K., & Wang, J. (2013). Cost-efficient task

https://aujes.journals.ekb.eg/

al., 2024 et Hamed

ASWAN SCIENCE AND TECHNOLOGY BULLETIN (ASTB)2 (1), pp. 1-16, (June 2024).

https://astb.journals.ekb.eg/ 0184.-7916, Print ISSN: 1110-Online ISSN: 3009

pg. 16

scheduling for executing large programs in the cloud. Parallel Computing, 39(4–5),

177–188. https://doi.org/10.1016/j.parco.2013.03.002

Tawfeek, M., El-Sisi, A., Keshk, A., & Torkey, F. (2015). Cloud task scheduling based on

ant colony optimization. International Arab Journal of Information Technology, 12(2),

129–137.

Wang, L., Pan, Q. K., & Tasgetiren, M. F. (2011). A hybrid harmony search algorithm for the

blocking permutation flow shop scheduling problem. Computers and Industrial

Engineering, 61(1), 76–83. https://doi.org/10.1016/j.cie.2011.02.013

Xu, Y., Li, K., Hu, J., & Li, K. (2014). A genetic algorithm for task scheduling on

heterogeneous computing systems using multiple priority queues. Information Sciences,

270, 255–287. https://doi.org/10.1016/j.ins.2014.02.122

https://aujes.journals.ekb.eg/

